Note: topics 7 and 9 are physics separate only		What? When? Why?			
	PHYSICS P8 Energy, work and power P9 Forces and their effects	PHYSICS P6 Radioactivity	PHYSICS P3 Conservation of Energy	PHYSICS P4 Waves and P5 EM waves	
Lesson 1 Learning intentions	Work & Power revising energy stores and transfers Identify the different ways that the energy of a system can be stored eg thermal, kinetic, gravitational Identify the different ways that the energy of a system can be changed a) through work done by forces b) in electrical equipment c) in heating.	The structure of the atom (may take more than one lesson if they can't recall it from chemistry) What is inside atoms? What are the properties of subatomic particles? Recall the relative masses and relative electric charges of protons, neutrons, electrons and positrons Be able to do calculations of the numbers of protons, neutrons and electrons in an atom or ion Explain what an isotope is Be able to recall the typical size (order of magnitude) of atoms and small molecules. Describe the structure of nuclei of isotopes using the terms atomic (proton) number and mass (nucleon)	Energy stores & transfers Explain that where there are energy transfers in a closed system there is no net change to the total energy in that system. Analyse the changes involved in the way energy is stored when a system changes, including: a) an object projected upwards or up a slope b) a moving object hitting an obstacle c) an object being accelerated by a constant force d) a vehicle slowing down e) bringing water to a boil in an electric kettle. Draw and interpret diagrams to represent energy transfers.	Know the properties of waves Recall that waves transfer energy and information without transferring matter eg Describe evidence that with water and sound waves it is the wave and not the water or air itself that travels Define and use the terms frequency and wavelength as applied to waves Use the terms amplitude, period, wave velocity and wavefront as applied to waves	

		number and using symbols in the ¹³ format ₆ C		
Lesson 2	Kinetic energy calculations	Development of atomic models	Energy efficiency	How waves travel
intentions	to calculate kinetic energy	Describe how and why the atomic model has changed over time	(H) Explain how efficiency can be increased	Describe the difference between longitudinal and transverse waves by referring to sound.
	Kinetic energy = 0.5 x mass x (speed) ²	Include reference to the plum pudding model explaining what this	Recall and use the equation: efficiency = (useful energy transferred by the device) / (total	electromagnetic, seismic and water waves
	Identify the energy being transformed in complex		energy supplied to the device)	Recall and use the equation
	examples including examples where objects	Describe Rutherford's alpha particle scattering experiment and why it	Explain that mechanical processes become wasteful when they cause a	wave speed = frequency × wavelength $v = f \times \lambda$
	change speed		rise in temperature so dissipating energy in heating the surroundings.	Measuring the speed of sound
		This lead to the Bohr model (like the chemistry diagrams with the electron shells)	Explain ways of reducing unwanted energy transfer, including through lubrication	Describe how to measure the velocity of sound in air and ripples on water surfaces
				Measure the speed of sound, using the equation: wave speed = distance ÷ time v = x/t
Lesson 3 Learning	Gravitational energy calculations	Electrons & orbits	Keeping warm Explain ways of reducing unwanted	Waves at boundaries
intentions	Recall the equations used to calculate gravitational	Recall that in each atom its electrons orbit the nucleus at different set distances from the nucleus.	energy transfer, including through thermal insulationDescribe the effects of the thickness and thermal	Explain how waves will be refracted at a boundary in terms of the change of direction and speed
	energy		conductivity of the walls of a building on its rate of cooling qualitatively	Recall that different substances may absorb, transmit, refract or

GPE = mass x gravitational field strength x height Identify the energy being transformed in complex examples including examples where objects fall or are lifted	Explain that electrons change orbit when there is absorption or emission of electromagnetic radiation. Explain how atoms may form positive ions by losing outer electrons.		reflect waves in ways that vary with wavelength
Lesson 4 Learning intentionsWork DoneDescribe how to measure the work done by a force using the equation: work done = force x distance (moved in the direction of the force) $E = F \times d$ Illustrate this with the trainer practical or a similar friction based practical	Types of radiation Recall that alpha, β – (beta minus), β + (positron), gamma rays and neutron radiation are emitted from unstable nuclei in a random process. Demonstrate Americium (alpha and weak gamma source) Know that an alpha particle is a high energy helium nucleus which is the biggest particle with a +2 charge Relate its size to the fact it was first to be found, is most ionising and lowest penetrating. Show the strontium 90 beta source. Know that a beta particle is a high energy electron somehow emitted from the nucleus	Stored energies Recall and use the equation to calculate the change in gravitational PE when an object is raised above the ground: change in gravitational potential energy = mass × gravitational field strength × change in vertical height Δ GPE = m × g × Δ h Recall and use the equation to calculate the amounts of energy associated with a moving object: kinetic energy = ½ × mass × (speed)2 KE = ½ × m × v ²	Wave Core Practical: Investigate the suitability of equipment to measure the speed, frequency and wavelength of a wave in a solid and a fluid

	 Show the radium source (α β and γ), block the others and show the penetration of gamma through lead. Know that a gamma ray is electromagnetic radiation. Compare alpha, beta and gamma radiations in terms of their abilities to penetrate and ionise. 		
Lesson 5 Learning intentionsPowerDefine power as the energy transferred per second.Recall and use the equation: power (watt, W) = work done (joule, J) \div time taken (second, s) $P = E/T$ If possible, work out your personal power as a practical.	 Background and contamination Clarify the sources of background radiation seen in the demo the previous lesson or demo again with banana skin. Explain what is meant by background radiation including sources of background radiation (and why Keighley is relatively safe.) Describe methods for measuring and detecting radioactivity limited to photographic film and a Geiger- Müller tube. Describe the dangers of ionising radiation in terms of tissue damage and possible mutations and relate this to the precautions needed. Describe the differences between contamination and irradiation effects and compare the hazards associated with these two. 	Non-renewable resources Describe the main energy sources available for use on Earth (including fossil fuels, nuclear fuel), and compare the ways in which both renewable and non-renewable sources are used. Explain patterns and trends in the use of energy resources	Topic 5 – Light and the electromagnetic spectrumProperties of ElectromagneticWavesRecall the main groupings of the continuous electromagneticspectrum including (in order) radio waves, microwaves, infrared, visible (including the colours of the visible spectrum), ultraviolet, x-rays and gamma raysDescribe the electromagnetic spectrum as continuous from radio waves to gamma rays and that the radiations within it can be grouped in order of decreasing wavelength and increasing frequencyRecall that all electromagnetic waves are transverse, that they travel at the same speed in a vacuum

				Explain, with examples, that all electromagnetic waves transfer energy from source to observer Recall that our eyes can only detect a limited range of frequencies of electromagnetic radiation
Lesson 6 Learning intentions	Objects affecting each other Describe, with examples, how objects can interact a) at a distance without contact, linking these to the gravitational, electrostatic and magnetic fields involved b) by contact, including normal contact force and friction c) producing pairs of forces which can be represented as vectors Explain the difference between vector and scalar quantities using examples Explain ways of reducing unwanted energy transfer	Decay Equations Describe the process of β^- decay (a neutron becomes a proton plus an electron) Describe the process of β^+ decay (a proton becomes a neutron plus a positron) Explain the effects on the atomic (proton) number and mass (nucleon) number of radioactive decays (α , β , γ and neutron emission) Use given data to balance nuclear equations in terms of mass and atomic number.	Renewable resources Describe the main energy sources available for use on Earth (including bio-fuel, wind, hydro-electricity, the tides and the Sun), and compare the ways in which both renewable and non-renewable sources are used. Explain patterns and trends in the use of energy resources	Core Practical: Investigate refraction in rectangular glass blocks in terms of the interaction of electromagnetic waves with matter
Lesson 7	through lubrication Vector diagrams	Half-Life		Differences in EM waves
Learning intentions				

	 (H) Use vector diagrams to illustrate resolution of forces, a net force, and equilibrium situations (scale drawings only) (H) Draw and use free body force diagrams (H) Explain that several forces can ad together to make a resultant force on (h) Describe cases of balanced forces when the resultant force is zero 	Describe how the activity of a radioactive source decreases over a period of time. Recall that the unit of activity of a radioactive isotope is the Becquerel, Bq. Explain that the half-life of a radioactive isotope is the time taken for half the undecayed nuclei to decay or the activity of a source to decay or the activity of a source to decay by half. Explain that it cannot be predicted when a particular nucleus will decay but half-life enables the activity of a very large number of nuclei to be predicted during the decay process. Use the concept of half-life to carry out simple calculations on the decay	Recall that different substances may absorb, transmit, refract or reflect electromagnetic waves in ways that vary with wavelength Explain the effects of differences in the velocities of electromagnetic waves in different substances Recall that the potential danger associated with an electromagnetic wave increases with increasing frequency Recall that changes in atoms and nuclei can a generate radiations over a wide frequency range b be caused by absorption of a range of radiations
Lesson 8 Learning intentions		of a radioactive isotope, including graphical representations Tillich blocks (dice) practical can illustrate this well	Uses and Dangers of EM waves (2 lessons) Describe the harmful effects on people of excessive exposure to electromagnetic radiation, including: a microwaves: internal heating of body cells

		b infrared: skin burns	
		c ultraviolet: damage to s	urface
		cells and eves. leading to	skin
		cancer and eve condition	S
			•
		d x-rays and gamma rays:	mutation
		or damage to cells in the	body
Lesson 9		Describe some uses of	
Learning		electromagnetic radiation	n
intentions		a radio wayes: including	
		broadcasting communica	ations and
			acoll that
		radio waves can be produ	iced by, or
		can themselves induce, of	scillations
		in electrical circuits)	
		b microwaves: including o	cooking,
		communications and sate	ellite
		transmissions	
		c infrared: including cook	ing,
		thermal imaging, short ra	nge
		communications, optical	fibres,
		television remote control	s and
		security systems	
		d visible light: including vi	ision.
		photography and illumina	ation
		e ultraviolet: including see	curity
		marking, fluorescent lam	ips,

		detecting forged bank notes and disinfecting water
		f x-rays: including observing the internal structure of objects, airport security scanners and medical x- rays g gamma rays: including sterilising food and medical equipment, and the detection of cancer and its
		treatment
Lesson 10		
Learning intentions		