Physics Year 11 – Autumn Term 2021

	Note: topics 7 and 9 are physics separate only	What? When? Why?	DHARICS	PHYSICS	DHARICZ
	P8 Energy, work and power P9 Forces and their effects	P6 Radioactivity	P12 Magnetism and p13 induction	P14 Particle Model	P10 Electricity and Circuits
Lesson 1 Learning intentions	Work & Power revising energy stores and transfers Identify the different ways that the energy of a system can be stored eg thermal, kinetic, gravitational Identify the different ways that the energy of a system can be changed a) through work done by forces b) in electrical equipment c) in heating.	The structure of the atom (may take more than one lesson if they can't recall it from chemistry) What is inside atoms? What are the properties of subatomic particles? Recall the relative masses and relative electric charges of protons, neutrons, electrons and positrons Be able to do calculations of the numbers of protons, neutrons and electrons in an atom or ion Explain what an isotope is	Introduction to magnetism (could be two lessons depending on practical time plotting fields) Recall that unlike magnetic poles attract and like magnetic poles repel Describe the uses of permanent and temporary magnetic materials including cobalt, steel, iron and nickel Explain the difference between permanent and induced magnets Describe the use of plotting compasses to show the shape and direction of the field of a	Introduction to particle theory Use a simple kinetic theory model to explain the different states of matter (solids, liquids and gases) in terms of the movement and arrangement of particles Consider crushing can pract Describe that when substances melt, freeze, evaporate, boil, condense or sublimate mass is conserved and that these physical changes differ from some chemical changes because the material recovers its original properties if the change is reversed	Electric circuits Describe the structure of the atom, limited to the position, mass and charge of protons, neutrons and electrons Recall that in an atom the number of protons equals the number of electrons and is therefore neutral Draw and use electric circuit diagrams representing them with the conventions of positive and negative terminals, and the symbols that represent cells, including batteries, switches, voltmeters, ammeters, resistors, variable resistors, lamps, motors, diodes, thermistors, LDRs and LEDs

		Be able to recall the typical size (order of magnitude) of atoms and small molecules. Describe the structure of nuclei of isotopes using the terms atomic (proton) number and mass (nucleon) number and using symbols in the 13 format ₆ C	magnet including the Earth's magnetic field Describe the shape and direction of the magnetic field around bar magnets and relate the strength of the field to the concentration of lines Explain how the behaviour of a magnetic compass is related to evidence that the core of the Earth must be magnetic Explain that magnetic forces are due to interactions between magnetic fields (eg the Earth's field and the compass's field)		Describe the differences between series and parallel circuits
Lesson 2 Learning intentions	Kinetic energy calculations Recall the equations used to calculate kinetic energy Kinetic energy = 0.5 x mass x (speed) ² Identify the energy being transformed in complex examples including examples where objects change speed	Development of atomic models Describe how and why the atomic model has changed over time Include reference to the plum pudding model explaining what this model was like Describe Rutherford's	Magnetic effect of a current (electromagnets) Describe how to show that a current can create a magnetic effect and relate the shape and direction of the magnetic field around a long straight conductor to the direction of the current Recall that the strength of the field depends on the	Density 1 Explain the differences in density between the different states of matter in terms of the arrangements of the atoms or molecules Recall and use the equation: density (kg/m ³) = mass (kg) ÷ volume (m ³) ρ = m /V	Current & potential difference Recall that a voltmeter is connected in parallel with a component to measure the potential difference (voltage), in volts, across it Recall that an ammeter is connected in series with a component to measure the

		experiment and why it replaced the plum pudding model. This lead to the Bohr model (like the chemistry diagrams with the electron shells)	size of the current and the distance from the long straight conductor Explain how inside a solenoid (an example of an electromagnet) the fields from individual coils add together to form a very strong almost uniform field along the centre of the solenoid but also cancel to give a weaker field outside the solenoid (this can easily be seen as a class practical with solenoids and iron filngs) Relate to earlier work (y8?) on electromagnets	Core Practical: Investigate the densities of solid and liquids. Start with liquids and regular solids	current, in amps, in the component Describe that when a closed circuit includes a source of potential difference there will be a current in the circuit Recall that current is conserved at a junction in a circuit
Lesson 3 Learning intentions	Gravitational energy calculations Recall the equations used to calculate gravitational energy GPE = mass x gravitational field strength x height Identify the energy being transformed in complex examples including	Electrons & orbits Recall that in each atom its electrons orbit the nucleus at different set distances from the nucleus. Explain that electrons change orbit when there is absorption or emission of electromagnetic radiation. Explain how atoms may form positive ions by losing outer electrons.	Force on a current carrying conductor Recall that a current carrying conductor placed near a magnet experiences a force (and that an equal and opposite force acts on the magnet) Recall and use Fleming's left-hand rule to represent the relative directions of the force.	Density 2 Core Practical: Investigate the densities of solid and liquids. Do irregular solids and clarify calculations	Current, charge and energy Explain that potential difference (voltage) is the energy transferred per unit charge passed and hence that the volt is a joule per coulomb Recall and use the equation: energy transferred (joule, J) = charge moved (coulomb, C) × potential difference (volt, V) $E = Q \times V$

examples where objects fall or are lifted		the current and the magnetic field for cases where they are mutually perpendicular Demonstrate catapult field Make simple motors		Explain that an electric current as the rate of flow of charge and the current in metals is a flow of electrons Recall and use the equation: charge (coulomb, C) = current (ampere, A) × time (second, s) $Q = I \times t$
Lesson 4 Learning intentionsWork DoneDescribe how to measure the work done by a force using the equation: work done = force x distance (moved in the direction of the force) $E = F \times d$ Illustrate this with the trainer practical or a similar friction based practical	Types of radiation Recall that alpha, β – (beta minus), β + (positron), gamma rays and neutron radiation are emitted from unstable nuclei in a random process. Demonstrate Americium (alpha and weak gamma source) Know that an alpha particle is a high energy helium nucleus which is the biggest particle with a +2 charge Relate its size to the fact it was first to be found, is most ionising and lowest penetrating. Show the strontium 90 beta source.	Calculations with magnetic forces Use the equation: force on a conductor at right angles to a magnetic field carrying a current (newton, N) = magnetic flux density (tesla, T or newton per ampere metre, N/A m) × current (ampere, A) × length (metre, m) $\mathbf{F} = \mathbf{B} \times \mathbf{I} \times \mathbf{L}$	Specific Heat Explain how heating a system will change the energy stored within the system and raise its temperature or produce changes of state Define the terms specific heat capacity and specific latent heat and explain the differences between them Use the equation: thermal energy for a change of state (J) = mass (kg) × specific latent heat (J/kg) Q = m× L Use the equation: change in thermal energy (J) = mass (kg) × specific heat capacity (J/kg °C) × change in temperature (°C)	Resistance Explain how changing the resistance in a circuit changes the current and how this can be achieved using a variable resistor Recall and use the equation: potential difference (volt, V) = current (ampere, A) × resistance (ohm, Ω) V = I × R Explain why, if two resistors are in series, the net resistance is increased, whereas with two in parallel the net resistance is decreased Calculate the currents, potential differences and resistances in series circuits

		Know that a beta particle is a high energy electron somehow emitted from the nucleus Its medium mass and charge make it medium ionising and penetrating. Show the radium source ($\alpha \beta$ and γ), block the others and show the penetration of gamma through lead. Know that a gamma ray is electromagnetic radiation. Compare alpha, beta and gamma radiations in terms of their abilities to penetrate and ionise.		ΔQ = m×c×Δθ	Explain the design and construction of series circuits for testing and measuring
Lesson 5 Learning intentions	Power Define power as the energy transferred per second. Recall and use the equation: power (watt, W) = work done (joule, J) ÷ time taken (second, s) P = E/T	Background and contamination Clarify the sources of background radiation seen in the demo the previous lesson or demo again with banana skin. Explain what is meant by background radiation including sources of background radiation (and	Induced currents (making electricity) Recall that potential difference is another name for voltage and that a voltage in a circuit will make a current flow. Recall the factors that affect the size and direction of an induced potential difference. This is best done with sensitive	Specific Heat core practical Core Practical: Investigate the properties of water by determining the specific heat capacity of water and obtaining a temperature- time graph for melting ice. Explain the use of thermal insulation to reduce the loss of thermal energy during the practical.	More about resistance Explain how current varies with potential difference for the following devices and how this relates to resistance a) filament lamps b) diodes c) fixed resistors Describe how the resistance of a light-dependent resistor

	If possible, work out your	why Keighley is relatively	analogue meters, coils		(LDR) varies with light
	personal power as a	safe.)	and magnets as a class		intensity
	practical.		practical.		
		Describe methods for			Describe how the resistance
		measuring and detecting	Explain how an		of a thermistor varies with
		radioactivity limited to	alternating current in one		change of temperature
		photographic film and a	circuit can induce a		(negative temperature
		Geiger–Müller tube.	current in another circuit		coefficient thermistors only)
		Describe the dangers of	in a transformer (best		Explain how the design and
		ionising radiation in terms	shown with 120/240 turn		use of circuits can be used to
		of tissue damage and	cons as a practical		explore the variation of
		possible mutations and			resistance in the following
		relate this to the			devices
		precautions needed.			a) filament lamps
					b) diodes
		Describe the differences			c) thermistors
		between contamination			d) LDRs
		and irradiation effects and			
		compare the nazards			
	Objects offecting each	Decey Equations	National grid		Core Prestical
Lesson 6	other	Decay Equations	National grid	Absolute zero	
Learning	other	Describe the process of β^-	Recall that a transformer	Explain the pressure of a gas	Core Practical: Construct
intentions	Describe, with examples,	decay (a neutron becomes	can change the size of an	in terms of the motion of its	electrical circuits to:
	how objects can interact	a proton plus an electron)	alternating voltage (note	particles	a) investigate the
	a) at a distance without	Describe the process of R^+	this is HT but you can't	Evaluin the offect of	a) investigate the
	contact, linking these to	docay (a proton bocomos a	understand the next	changing the temperature of	not ontial difference, current
	the gravitational,	neutron plus a positron)	statement without it)	a gas on the velocity of its	and resistance for a resistor
	electrostatic and magnetic		Explain why in the	a gas on the velocity of its	and a filament lamp
	fields involved	Explain the effects on the	national grid electrical	particles and hence on the	
	b) by contact, including	atomic (proton) number	energy is transferred at	mass of gas at constant	b) test series and parallel
	normal contact force and	and mass (nucleon)	high voltages from nower	volume (qualitative only)	circuits using resistors and
	friction	number of radioactive	stations, and then	volume (quantative only)	filament lamps
	c) producing pairs of	decays (α , β , γ and	transferred at lower	Describe the term absolute	
		neutron emission)	voltages in each locality	zero, −273 °C, in terms of the	
			for domestic uses as it		

forces which can be represented as vectors Explain the difference between vector and scalar quantities using examples Explain ways of reducing unwanted energy transfer through lubrication	Use given data to balance nuclear equations in terms of mass and atomic number.	improves the efficiency by reducing heat loss in transmission lines Explain where and why step-up and step-down transformers are used in the transmission of electricity in the national grid	lack of movement of particles Convert between the kelvin and Celsius scales	
Lesson 7 Vector diagrams	Half-Life	National grid calculations		Transferring energy
intentions(H) Use vector diagrams to illustrate resolution of forces, a net force, and equilibrium situations (scale drawings only) (H) Draw and use free body force diagrams (H) Explain that several forces can ad together to make a resultant force on (h) Describe cases of balanced forces when the resultant force is zero	 Describe now the activity of a radioactive source decreases over a period of time. Recall that the unit of activity of a radioactive isotope is the Becquerel, Bq. Explain that the half-life of a radioactive isotope is the time taken for half the undecayed nuclei to decay or the activity of a source to decay by half. Explain that it cannot be predicted when a particular nucleus will decay but half-life enables the activity of a very large 	Use the power equation (for transformers with100% efficiency): potential difference across primary coil (volt, V) × current in primary coil (ampere, A) = potential difference across secondary coil (volt, V) × current in secondary coil (ampere, A) VP × IP =VS × IS		Recall that, when there is an electric current in a resistor, there is an energy transfer which heats the resistor Explain that electrical energy is dissipated as thermal energy in the surroundings when an electrical current does work against electrical resistance Explain the energy transfer (in 10.22 above) as the result of collisions between electrons and the ions in the lattice (H) Explain ways of reducing unwanted energy transfer through low resistance

	predicted during the decay	Describe the advantages and
	process.	disadvantages of the heating
	Use the concent of half-life	effect of an electric current
	to carry out simple	
	calculations on the decay	Use the equation: energy
	of a radioactive isotopo	transferred (joule, J) =
	or a radioactive isotope,	current (ampere, A) ×
		potential difference (volt, V)
	representations	× time (second, s)
	Tillich blocks (dice)	$F = I \times V \times t$
	practical can illustrate this	
	well	
Lesson 8		Power
intentions		Describe power as the
Intentions		energy transferred per
		second and recall that it is
		measured in watts
		Recall and use the equation:
		power (watt, W) = energy
		transferred (ioule 1) ÷ time
		taken (second s)
		laken (second, s)
		P = E/t
		Explain how the power
		transfer in any circuit device
		is related to the potential
		difference across it and the
		current in it
		Recall and use the
		equations: electrical power
		(watt, W) = current (ampere,

			A) × potential difference
			(volt. V)
			$P = I \times V$
			electrical power (watt, W) =
			current squared $(ampere^2)$
			(a h p c r c)
			A^{-}) × resistance (onms, Ω)
			$D = l^2 \times D$
Lesson 9			Transferring energy by
Learning			electricity
intentions			
Intentions			Describe how, in different
			domestic devices, energy is
			transforred from battories
			transferred from batteries
			and the a.c. mains to the
			energy of motors and
			heating devices
			Explain the difference
			between direct and
			alternating voltage
			Describe direct current (d.c.)
			as movement of charge in
			one direction only and recall
			that cells and batteries
			supply direct current (d.c.)
			Describe that in alternating
			current (a.c.) the movement
			of charge changes direction
			Recall that in the UK the
			domestic supply is a.c., at a

			frequency of 50 Hz and a
			voltage of about 230 V
			_
			Describe, with examples, the
			relationship between the
			power ratings for domestic
			electrical appliances and the
			changes in stored energy
			when they are in use
Lesson 10			Electrical safety
Learning			
intentions			Explain the difference in
			function between the live
			and the neutral mains input
			wires.
			Explain the function of an
			earth wire and of fuses or
			circuit breakers in ensuring
			safety.
			Explain why switches and
			fuses should be connected in
			the live wire of a domestic
			circuit.
			Recall the potential
			differences between the live
			neutral and earth mains
			wires
			wines.
			Explain the dangers of
			providing any connection
			between the live wire and
			earth.