<u>Year 8 – Autumn Term</u>

	BIOLOGY	CHEMISTRY	PHYSICS	BIOLOGY
	8A – Nutrition &	8E – Combustion &	8L - Fluids	8B – Plants & their
	Digestion	Oxidation		Reproduction
Introduction	Introduction to labora	atory practice; safety ar	nd practical skills. Over	view of the
Lesson	philosophy of science	, building empirical evid	dence via experimenta	l data.
Lesson 1	To understand what	To recall the	To review the three	To classify organisms
Learning	the term 'diet'	chemical definition	states of matter	into kingdoms based
intentions:	means. That	of a 'fuel'. To know	(solid, liquid & gas)	on characteristics.
	different species	that most fuels	and draw	To explain how
	require different	contain carbon, and	appropriate particle	organisms are
	diets, e.g.	that hydrocarbon	diagrams. To recall	classified, using
	carnivores,	fuels are of global	the definition of	smaller and smaller
	herbivores and	importance. To	density and state	groupings of shared
	omnivores. What	state the basic	several examples of	characteristics.
	constitutes a	equation of	high and low	To identify the gonus
	balanced & healthy	combustion. Quick	density materials.	and species names
	human diet. Quick	Quiz completed.	To complete the	from a binomial
	Quiz completed.		Quick Quiz.	
Lesson 2	To describe a	To describe	To retain and apply	To use a sample to
Learning	healthy diet	combustion as an	the density	calculate an estimate
intentions:	comprising of 5	oxidation reaction.	equation. To know	of population size.
	main categories –	Students will see a	the SL units of	
	carbohydrates.	demonstration of	density and perform	To plan an
	proteins, lipids,	the combustion	simple density	appropriate sample
	fibre and vitamins.	giving chemical	calculations. To	size.
	To explain the idea	proof for the	successfully convert	To evolain the effects
	of energy balance	products of	units of density.	of too small and too
	and the problems of	combustion. To	mass and volume	hig a sample size
	imbalance such as	recall the chemical	into SI units. To	Sig a sumple size.
	malnutrition and	tests for carbon	describe how	
	obesity.	dioxide and water.	volume and mass of	
	,		simple shapes are	
			calculated.	

Lesson 3 Learning intentions:	To demonstrate how the three main food groups (fats, proteins and carbohydrates) can be detected using chemical analysis in the lab. To describe what both a positive and negative test result looks like and what the result implies about the chemical profile of the food tested.	To describe how metals react with oxygen, and recall common examples such as rusting. Students will conduct an experiment to determine the mass increase from combusting magnesium with oxygen. To state the chemical equation for producing	To describe changes of state using key science vocabulary. To know that state changes are both temperature and pressure dependent. To describe some common examples of state changes. To recall the SI unit of temperature and explain its molecular basis	To describe the main features of asexual and sexual reproduction To explain how inherited variation is caused (does not include genes). To explain the difference in outcomes of asexual and sexual reproduction in plants.
Lesson 4 Learning intentions:	To know what units of energy are used in food labels. To describe how a bomb calorimeter works to calculate the energy in foods. To know the diseases of vitamin/mineral deficiency and excess.	To understand fire safety in the home. To state and explain the fire triangle. To explain how various fire extinguishing methods work. To watch an example of a chip pan fire incorrectly extinguished.	using the particle model. To comprehend that a pure substance has a sharp melting & boiling point. To identify the points of state transition of a cooling curve. To be able to draw and label a cooling curve. To recognise that impure substances change state over a range of temperatures.	To describe how the structures of a flower are adapted to their functions. To describe how plants avoid self- pollination. To explain why plants try to avoid self- pollination. To explain how some pollen grains are adapted to their functions.
Lesson 5 Learning intentions:	To describe the main organs of digestion and their contribution to the digestive process. To be able to explain the sites of absorption for nutrient molecules and water. To look at some conditions of malabsorption.	To describe the difference between complete and incomplete combustion. To know that incomplete combustion produces all the products of complete combustion plus soot and carbon	To examine the ice- water anomaly of density. Students should be able to give a description for this using the particle model. To begin to comprehend the term 'latent heat' as applied to state change. To know that melting point	To explain the functions of the different parts of a seed.

		monoxide. To	analysis can identify	
		describe how	a chemical	
		carbon monoxide is	substance.	
		dangerous and how		
		it can be detected in		
		the home.		
Lesson 6	To be able to state	Students should	To describe pressure	To explain the
Learning	the definition of an	describe how the	in a fluid using SI	importance of seed
intentions:	enzyme. To know	impurities in	units. To be able to	dispersal.
	why enzymes are	hydrocarbon fuels	convert between	
	needed in digestion.	cause air pollution.	common SI units of	
	To describe the role	To state that sulphur	pressure. To	To evaluate different
	of three stated	dioxide and	describe how simple	methods of seed
	enzymes in the	nitrogen oxides can	altimeters and	dispersal.
	digestion of starch,	cause acid rain,	barometers	
	proteins and lipids	smog and impair	function, plus the	
	and how they	health. To explain	utility of barometers	
	enable large and	how catalytic	in predicting	
	insoluble foods to	converters in	weather conditions.	
	become small and	vehicles reduce the	To know weather is	
	soluble molecules	emission of these	partly dependent of	
	that can be	gasses.	atmospheric	
	absorbed into the		pressure. To recall	
	blood.		the use oh hydraulic	
			and pneumatic	
			pressure.	
Lesson 7	This is a laboratory	To look at the effect	To describe why	
Learning	lesson examining by	on the climate of	certain objects float	
intentions:	experimentation	greenhouse gasses,	and sink in water.	
	the effect of three	particularly carbon	Students should be	
	variables	dioxide, from	able to define the	
	(temperature, pH	burning fossil fuels.	term 'displacement'	
	and concentration)	To describe how	as relating to	
	on the rate of starch	carbon dioxide acts	floating or sinking.	
	breakdown by the	as a greenhouse	To study the	
	enzyme amylase.	gas. To be able to	development of	
	Students should	state some	boats and be able to	
	know how the	strategies to	explain how an iron	
	internal condition of	mitigate the	boat can float. To	
	the body is	deleterious effects	describe the utility	
	optimised to	of greenhouse gas	ot a Plimsoll line on	
	maintain the rate of	emissions, and	boats. To describe	
	starch breakdown	reduce the amount	how hot-air	
	at maximum.	produced.	balloons float in air.	
Lesson 8	Students should be	This lesson uses the	This lesson looks at	
Learning	able to describe	topic of climate	drag and the	
intentions:	how the small	change and	physical basis of it.	

	intestine is adapted	greenhouse gas	To be able to state	
	to absorb nutrient	emissions as a	what drag is and	
	molecules through	segway into climate	state some	
	anatomical	science. Students	examples of drag.	
	modifications of its	should be able to	To know what a	
	surface. To explain	distinguish high	drag co-efficient is	
	the role of bile in	quality data from	and how to	
	lipid absorption. To	low quality data;	calculate a simple	
	examine the	the peer-reviewed	co-efficient. To	
	anatomy of the	article is used as a	explain how the	
	gallbladder and	gold standard of	shape of objects	
	liver.	quality. Students	subject to drag can	
		should be able to	be altered to either	
		distinguish between	increase or	
		independent,	decrease drag. To	
		dependent and	be able to describe	
		control variables in	how the surface	
		an experiment.	area of an object	
			relates to its drag	
			co-efficient.	
Lesson 9	To be able to state	Extended writing	Extended writing	
Learning	the definition of	task designed to	task designed to	
Intentions:	diffusion and how	integrate the	integrate the	
	nutrients move	learning journey	learning journey	
	through the	into a unified	into a unified	
	intestinal wall into	whole. The task is to	whole. This task	
	the blood via	compare and	uses The Titanic as a	
	diffusion. To know	contrast the	model object and	
	how the circulatory	benefits and	the student must	
	system delivers	disadvantages of	describe why it	
	nutrient molecules	fuel cells to power	floated and how it	
	to the tissues and	vehicles, compared	sunk, using all the	
	the role of diffusion	to a conventional	key concepts	
	In that process.	Internal compustion	investigated in this	
Losson 10	Extended writing	engine.	Unit.	
Lesson 10	Extended writing	sell-differentiated	sen-unierentiateu	
Learning	integrate the	consolidation of the	consolidation of the	
intentions.		units' coro matorial	units' core material	
	into a unified whole	Teacher-led	Teacher-led	
		summary of	summary of	
	cheese candwich'	threshold concents	threshold concents	
		End of tonic repeat	End of tonic repeat	
		of 'Ouick Ouiz' to	of 'Ouick Ouiz' to	
		check progression	check progression	
		CHECK PLOGLESSION.	CHECK PLOGLESSION.	

Lesson 11	Self-differentiated	No lesson 11 in this	No lesson 11 in this	
Learning	revision tasks to aid	unit.	unit.	
intentions:	consolidation of the			
	units' core material.			
	Teacher-led			
	summary of			
	threshold concepts.			
	End of topic repeat			
	of 'Quick Quiz' to			
	check progression.			