Science Year 11 – Summer Term 2021/2022

	What? When? Why?				
	PHYSICS	BIOLOGY	CHEMISTRY	PHYSICS	
	P14&15 Particle Model	Revision	Revision	Revision	
Lesson 1 Learning intentions	Use a simple kinetic theory model to explain the different states of matter (solids, liquids and gases) in terms of the movement and arrangement of particles. Recall and use the equation: density (kilograms per cubic metre, kg/m3) = mass (kilograms, kg) ÷ volume (cubic metres, m3) p = m/V Explain the differences in density between the different states of matter in terms of the	Revision will be student lead	Revision will be student lead	Revision will be student lead	
Lesson 2 Learning intentions	arrangements of the atoms or molecules. Core Practical Core practical: Investigate the densities of solid and liquids.				

Lesson 3	Energy and changes of state		
Learning	Use a simple kinetic theory model		
intentions	to explain the different states of		
intentions	matter (solids, liquids and gases)		
	in terms of the movement and		
	arrangement of particles.		
	arrangement or pertinol		
	Describe that when substances		
	melt, freeze, evaporate, boil,		
	condense or sublimate mass is		
	conserved and that these physical		
	changes differ from some		
	chemical changes because the		
	material recovers its original		
	properties if the change is		
	reversed		
Lesson 4	Specific Latent heat		
Learning	Explain how heating a system will		
intentions	change the energy stored within		
	the system and raise its		
	temperature or produce changes		
	of state.		
	of state.		
	Define the terms specific heat		
	capacity and specific latent heat		
	and explain the differences		
	between them		
	Use the equation: thermal energy		
	for a change of state (joules, J) =		
	mass (kilogram, kg) × specific		
	latent heat (joules per kilogram,		
	J/kg)		

	$Q = m \times L$		
Lesson 5	Specific heat capacity		
Learning	Use the equation: change in		
intentions	thermal energy (joules, J) = mass		
	(kilogram, kg) × specific heat		
	capacity (joules per kilogram		
	degree celsius, J/kg °C) × change in		
	temperature (degree celsius, °C)		
	$\Delta Q = m \times c \times \Delta \vartheta$		
	Explain ways of reducing		
	unwanted energy transfer through thermal insulation.		
	thermal module.		
Lesson 6	Core Practical		
Learning	Core Practical: Investigate the		
intentions	properties of water by		
	determining the specific heat		
	capacity of water and obtaining a		
	temperature-time graph for		
	melting ice.		
Lesson 7	Gas Pressure		
Learning	Explain the pressure of a gas in		
intentions	terms of the motion of its particles		
Lesson 8	<u>Gas Temperature</u>		
Learning	Explain the effect of changing the		
intentions	temperature of a gas on the		
	velocity of its particles and hence		
	on the pressure produced by a		

	fixed mass of gas at constant volume (qualitative only) Describe the term absolute zero, –273 °C, in terms of the lack of movement of particles. Convert between the kelvin and Celsius scales.		
Lesson 9 Learning	Bending and stretching Explain, using springs and other		
intentions	elastic objects, that stretching, bending or compressing an object requires more than one force.		
	Describe the difference between elastic and inelastic distortion.		
Lesson 10 Learning intentions	Extension & energy transfers Recall and use the equation for linear elastic distortion including calculating the spring constant:		
	force exerted on a spring (newton, N) = spring constant (newton per metre, N/m) × extension (metres, m)		
	$F = k \times x$ Use the equation to calculate the work done in stretching a spring:		
	energy transferred in stretching (joules, J) = 0.5 × spring constant		

	(newton per metre, N/m) × (extension (metres, m)) ²		
	$E = \frac{1}{2} \times k \times x^2$		
	Describe the difference between linear and non-linear relationships between force and extension		
Lesson 11	Core Practical		
Learning intentions	Core Practical: Investigate the extension and work done when applying forces to a spring.		