	What? When? Why?		
	BIOLOGY B3 Genetics	CHEMISTRY C3&4 Atoms & the periodic table	PHYSICS P2 Forces & Motion
Lesson 1 Learning intentions	Meiosis	Structure of the atom	Resultant forces
intentions	Explain the role of meiotic cell division, including the production of four daughter cells, each with half the number of chromosomes, and that this results in the formation of genetically different haploid	Describe how the Dalton model of an atom has changed over time because of the discovery of subatomic particles.	Recall Newton's First Law and use it in the following situations: a) where the resultant force on a body is zero, i.e. the body is moving at a constant velocity or is at rest
	gametes The stages of meiosis are not required.	Describe the structure of an atom as a nucleus containing protons and neutrons, surrounded by electrons in shells.	b) where the resultant force is not zero, i.e. the speed and/or direction of the body changes
	Describe the genome as the entire DNA of an organism and a gene as a section of a DNA molecule that codes for a specific protein	Recall the relative charge and relative mass of: a) a proton b) a neutron c) an electron	
		Explain why atoms contain equal numbers of protons and electrons.	

		Describe the nucleus of an atom as very small compared to the overall size of the atom	
Lesson 2	DNA	Atomic and mass numbers	Newton's 1 st law
Learning intentions	Describe DNA as a polymer made up of: a) two strands coiled to form a double helix b) strands linked by a series of complementary base pairs joined together by weak hydrogen bonds c) nucleotides that consist of a sugar and phosphate group with one of the four different bases attached to the sugar. Explain how DNA can be extracted from fruit	Recall that most of the mass of an atom is concentrated in the nucleus. Recall the meaning of the term mass number of an atom. Describe atoms of a given element as having the same number of protons in the nucleus and that this number is unique to that element. Calculate the numbers of protons, neutrons and electrons in atoms given the atomic number and mass number	Recall Newton's First Law and use it in the following situations: a) where the resultant force on a body is zero i.e. the body is moving at a constant velocity or is at rest b) where the resultant force is not zero i.e. the speed and/or direction of the body change(s) Explain that an object moving in a circular orbit at constant speed has a changing velocity (qualitative only) (H) Explain that for motion in a circle there must be a resultant force known as a centripetal force that acts towards the centre of the circle. (H)
Lesson 3	Alleles	<u>Isotopes</u>	Mass & weight
Learning intentions	Explain why there are differences in the inherited characteristics as a result of alleles.	Describe isotopes as different atoms of the same element containing the same number of protons but different numbers of neutrons in their nuclei.	Define weight, recall and use the equation: weight (newton, N) = mass (kilogram, kg) × gravitational field strength (newton per kilogram, N/kg), $W = m \times g$
	Explain the terms: chromosome, gene, allele, dominant, recessive, homozygous,		Describe how weight is measured Describe the relationship between the weight of a body and the gravitational field strength

	heterozygous, genotype, phenotype, gamete and zygote.	Calculate the numbers of protons, neutrons and electrons in atoms given the atomic number and mass number.	
	Explain monohybrid inheritance using genetic diagrams and family pedigrees	Explain how the existence of isotopes results in some relative atomic masses of some elements not being whole numbers.	
		Calculate the relative atomic mass of an element from the relative masses and abundances of its isotopes (H)	
Lesson 4	Inheritance	Elements and the periodic table	Newton's 2 nd law
Learning intentions	Explain monohybrid inheritance using Punnett squares. Describe how the sex of offspring is determined at fertilisation, using genetic diagrams. Calculate and analyse outcomes (using probabilities, ratios and percentages) from monohybrid crosses and pedigree analysis for dominant and recessive traits.	Describe how Mendeleev arranged the elements, known at that time, in a periodic table by using properties of these elements and their compounds. Describe how Mendeleev used his table to predict the existence and properties of some elements not then discovered. Recall the formulae of elements, simple compounds and ions.	Recall and use Newton's Second Law as force (newton, N) = mass (kilogram, kg) × acceleration (metre per second squared, m/s^2) $F = m \times a$ Explain that inertial mass is a measure of how difficult it is to change the velocity of an object (including from rest) and know that it is defined as the ratio of force over acceleration. (H)
Lesson 5	Gene mutations	Atomic number & the periodic table	Core practical
Learning			//
intentions			Core Practical: Investigate the relationship between force, mass and acceleration by varying the masses added to trolleys

	State that most phenotypic features are the result of multiple genes rather than single gene inheritance. Describe the causes of variation that influence phenotype, including a genetic variation – different characteristics as a result of mutation	Explain that Mendeleev thought he had arranged elements in order of increasing relative atomic mass but this was not always true because of the relative abundance of isotopes of some pairs of elements in the periodic table. Explain the meaning of atomic number of an element in terms of position in the periodic	
	Discuss the outcomes of the Human	table and number of protons in the nucleus.	
	Genome Project and its potential applications within medicine.	Describe that in the periodic table a) elements are arranged in order of increasing atomic number, in rows called periods	
	State that there is usually extensive genetic variation within a population of a species and that these arise through mutations.	b) elements with similar properties are placed in the same vertical columns called groups.	
	State that most genetic mutations have no effect on the phenotype, some mutations have a small effect on the phenotype and, rarely, a single mutation will significantly affect the phenotype.	Identify elements as metals or non-metals according to their position in the periodic table, explaining this division in terms of the atomic structures of the elements	
Lesson 6	Variation	Electronic configuration & the periodic table	Newton's 3 rd law
Learning intentions	Describe the causes of variation that influence phenotype including a) genetic variation – different characteristics as a result of mutation and sexual reproduction b) environmental variation – different	Predict the electronic configurations of the first 20 elements in the periodic table as diagrams and in the form, for example, 2.8.1.	Recall and apply Newton's Third Law to equilibrium situations Recall and apply Newton's Third Law to collision interactions(H)

	characteristics caused by an organism's environment (acquired characteristics	Explain how the electronic configuration of an element is related to its position in the periodic table	
Lesson 7			Momentum (higher tier only)
Learning intentions			Recall and apply Newton's Third Law to collision interactions and relate it to the conservation of momentum in collisions.
			Define momentum, recall and use the equation: momentum (kilogram metre per second, kg m/s) = mass (kilogram, kg) × velocity (metre per second, m/s) p = m × v
			Describe examples of momentum in collisions
			Use Newton's Second Law as: force (newton, N) = change in momentum (kilogram metre per second, kg m/s) ÷ time (second, s)
			F = (mv - mu)/t
Lesson 8			Stopping distances
Learning intentions			Explain methods of measuring human reaction times and recall typical results.
			Recall that the stopping distance of a vehicle is made up of the sum of the thinking distance and the braking distance
			Explain that the stopping distance of a vehicle is affected by a range of factors including: a) the mass of the vehicle b) the speed of the vehicle c) the driver's reaction time d) the state of the vehicle's brakes e) the state of the road

	the road surface. Describe the factors	ction between the tyre and s affecting a driver's ling drugs and distractions
Lesson 9	Crash hazards	
Learning	Explain the dangers	caused by large
intentions		stimate the forces involved
	in typical situations	on a public road (H)
	Use Newton's Seco	nd Law as: force (newton,
		nentum (kilogram metre
	per second, kg m/s	
	F = (mv - mu)/t (H)
Lesson 10		
Learning		
intentions		