	What?				
	When?				
	Why? PHYSICS	BIOLOGY	CHEMISTRY	PHYSICS	BIOLOGY
	P7&8 Energy, Forces	B7 Animal Coordination	C9-12 Chemical Change	P9 Electricity and Circuits	
	Doing Work				Functions
	P6 Radioactivity				
Lesson 1	Work & Power	<u>Hormones</u>	<u>Electrolysis</u>	Electric circuits	<u>Photosynthesis</u>
Learning intentions	Identify the different ways that the energy of a system can be changed a) through work done by forces b) in electrical equipment c) in heating. Describe how to measure the work done by a force and understand that energy transferred (joule, J) is equal to work done (joule, J) Recall and use the equation: work done (joule, J) = force (newton, N) × distance moved in the direction of the force (metre, m) $E = F \times d$	Describe where hormones are produced and how they are transported from endocrine glands to their target organs including the pituitary gland, thyroid gland, pancreas, adrenal glands, ovaries and testes.	Recall that electrolytes are ionic compounds in the molten state or dissolved in water Describe electrolysis as a process in which electrical energy, from a direct current supply, decomposes electrolytes. Explain the movement of ions during electrolysis, in which: a) positively charged cations migrate to the negatively charged cathode b) negatively charged anions migrate to the positively charged anode. (H) Write half equations for reactions occurring at	Describe the structure of the atom, limited to the position, mass and charge of protons, neutrons and electrons Draw and use electric circuit diagrams representing them with the conventions of positive and negative terminals, and the symbols that represent cells, including batteries, switches, voltmeters, ammeters, resistors, variable resistors, lamps, motors, diodes, thermistors, LDRs and LEDs Describe the differences between series and parallel circuits	organisms as the main producers of food and therefore biomass. Describe photosynthesis in plants and algae as an endothermic reaction that uses light energy to react carbon dioxide and water t produce glucose and oxyge

	Describe and calculate the changes in energy involved when a system is changed by work done by forces. Define power as the rate at which energy is transferred and use examples to explain this definition. Recall and use the equation: power (watt, W) = work done (joule, J) \div time taken (second, s) P = E/T Recall that one watt is equal to one joule per second, J/s Explain ways of reducing unwanted energy transfer through lubrication		the anode and cathode in electrolysis (H) Explain oxidation and reduction in terms of loss or gain of electrons (H) Recall that reduction occurs at the cathode and that oxidation occurs at the anode in electrolysis reactions		
Lesson 2 Learning intentions	Objects affecting each other Describe, with examples, how objects can interact a) at a distance without contact, linking these to the gravitational, electrostatic and magnetic fields involved	Hormonal control of metabolic rate (higher tier only) (H) Explain that adrenalin can be controlled by a negative feedback mechanism and is produced by the adrenal glands to prepare the	Core practical Core Practical: Investigate the electrolysis of copper sulfate solution with inert electrodes and copper electrodes	Recall that a voltmeter is connected in parallel with a component to measure the potential difference	Factors affecting photosynthesis Explain the effect of temperature, light intensity and carbon dioxide concentration on the rate of photosynthesis. (H) Explain the interactions of temperature, light

	 b) by contact, including normal contact force and friction c) producing pairs of forces which can be represented as vectors Explain the difference between vector and scalar quantities using examples Explain ways of reducing unwanted energy transfer through lubrication 	body for fight or flight, including: a) increased heart rate b) increased blood pressure c) increased blood flow to the muscles d) raised blood sugar levels by stimulating the liver to change glycogen into glucose (H) Explain how thyroxine controls metabolic rate as an example of negative feedback, including: a) low levels of thyroxine stimulates production of TRH in hypothalamus b) this causes release of TSH from the pituitary gland c) TSH acts on the thyroid to produce thyroxine d) when thyroxine levels are normal thyroxine inhibits the release of TRH		current, in amps, in the component Describe that when a closed circuit includes a source of potential difference there will be a current in the circuit Recall that current is conserved at a junction in a	intensity and carbon dioxide concentration in limiting the rate of photosynthesis. (H) Explain how the rate of photosynthesis is directly proportional to light intensity and inversely proportional to the distance from a light source, including the use of the inverse square law calculation.
Lesson 3	Vector diagrams	and the production of TSH The menstrual cycle	Products of electrolysis	Current, charge and energy	Core Practical
Learning intentions	(H) Use vector diagrams to illustrate resolution of forces, a net force, and equilibrium situations (scale drawings only)	Describe the stages of the menstrual cycle including the roles of the hormones oestrogen and progesterone, in the	Explain the formation of the products in the electrolysis, using inert electrodes, of some electrolytes, including: a) copper chloride solution	Explain that potential	Core practical: Investigate the effect of light intensity on the rate of photosynthesis

	 (H) Draw and use free body force diagrams (H) Explain examples of the forces acting on an isolated solid object or a system where several forces lead to a resultant force on an object and the special case of balanced forces when the resultant force is zero 	control of the menstrual cycle. Explain how hormonal contraception influences the menstrual cycle and prevents pregnancy. Evaluate hormonal and barrier methods of contraception.	 b) sodium chloride solution c) sodium sulfate solution d) water acidified with sulfuric acid e) molten lead bromide (demonstration) Predict the products of electrolysis of other binary, ionic compounds in the molten state. Explain formation of the products in the electrolysis of copper sulfate solution, using copper electrodes, and how this electrolysis can be used to purify copper 	that the volt is a joule per coulomb Recall and use the equation: energy transferred (joule, J) = charge moved (coulomb, C) × potential difference (volt, V) $E = Q \times V$ Explain that an electric current as the rate of flow of charge and the current in metals is a flow of electrons Recall and use the equation: charge (coulomb, C) = current (ampere, A) × time (second, s) $Q = I \times t$	
Loarning	Atomic models Describe an atom as a	Hormonal control of the menstrual cycle (higher	Reactivity Deduce the relative	Resistance	Absorbing eater & mineral ions
intentions	positively charged nucleus	<u>tier only)</u>	reactivity of some metals,		Explain how substances are
	surrounded by negatively charged electrons, with the nuclear radius much	(H) Explain the interactions of oestrogen, progesterone, FSH and LH	by their reactions with water, acids and salt solutions.	changes the current and how this can be achieved using a variable resistor	cells, including by diffusion, osmosis and active
	smaller than that of the atom and with almost all of the mass in the nucleus. Recall the typical size	in the control of the menstrual cycle, including the repair and maintenance of the	(H) Explain displacement reactions as redox reactions, in terms of gain or loss of electrons.	Recall and use the equation: potential difference (volt, V) = current (ampere, A) ×	transport. Explain how the structure of the root hair cells is adapted to absorb water and mineral
	(order of magnitude) of atoms and small molecules.	uterus wall, ovulation and menstruation.	Explain the reactivity series of metals	resistance (ohm, Ω) $V = I \times R$ Explain why, if two resistors	ions
	Describe how and why the atomic model has changed	(H) Explain the use of hormones in Assisted	(potassium, sodium, calcium, magnesium, aluminium, (carbon), zinc,	are in series, the net resistance is increased, whereas with two in parallel	

	over time including reference to the plum pudding model and Rutherford alpha particle scattering leading to the Bohr model	Reproductive Technology (ART) including IVF and clomifene therapy.	silver, gold) in terms of the reactivity of the metals with water and dilute acids and that these reactions show the relative tendency of metal atoms to form cations	Calculate the currents, potential differences and resistances in series circuits Explain the design and construction of series circuits for testing and measuring	
Lesson 5	Inside atoms	Control of blood glucose	<u>Ores</u>	More about resistance	Transpiration & Translocation
Learning intentions	Describe the structure of nuclei of isotopes using the terms atomic (proton) number and mass (nucleon) number and using symbols in the 13 format 6 C Recall that the nucleus of each element has a characteristic positive charge, but that elements differ in mass by having different numbers of neutrons. Recall the relative masses and relative electric charges of protons, neutrons, electrons and positrons Recall that in an atom the number of protons equals	 Explain the importance of maintaining a constant internal environment in response to internal and external change. Explain how the hormone insulin controls blood glucose concentration. (H) Explain how blood glucose concentration is regulated by glucagon. Explain the cause of type 1 diabetes and how it is controlled. 	as the uncombined elements. Explain why the method used to extract a metal from its ore is related to its position in the reactivity series and the cost of the extraction process, illustrated by a) heating with carbon (including iron) b) electrolysis (including aluminium) (knowledge of the blast furnace is not required) (H) Evaluate alternative	how this relates to resistance a) filament lamps b) diodes c) fixed resistors Describe how the resistance of a light-dependent resistor (LDR) varies with light intensity Describe how the resistance of a thermistor varies with change of temperature (negative temperature coefficient thermistors only) Explain how the design and	Translocation Explain how the structures of the xylem and phloem are adapted to their function in the plant, including: a) lignified dead cells in xylem transporting water and minerals through the plant b) living cells in phloem using energy to transport sucrose around the plant. Describe how water and mineral ions are transported through the plant by transpiration, including the structure and function of the stomata. Describe how sucrose is transported around the plant by translocation Explain the effect of environmental factors on the

	the number of electrons and is therefore neutral		metal extraction (bacterial and phytoextraction)	a) filament lamps b) diodes c) thermistors d) LDRs	rate of water uptake by a plant, to include light intensity, air movement and temperature. Demonstrate an understanding of rate calculations for transpiration
Lesson 6 Learning intentions	Electrons & orbits Recall that in each atom its electrons orbit the nucleus at different set distances from the nucleus. Explain that electrons change orbit when there is absorption or emission of electromagnetic radiation. Explain how atoms may form positive ions by losing outer electrons. Describe how and why the atomic model has changed over time including reference to the plum pudding model and Rutherford alpha particle scattering leading to the Bohr model	Type 2 diabetesExplain the cause of type 2diabetes and how it iscontrolled.Evaluate the correlationbetween body mass andtype 2 diabetes includingBMI and waist:hipcalculations using the BMIequation: $BMI = \frac{\text{weight (kg)}}{(\text{height (m)})^2}$	reactions as redox	Core Practical Core Practical: Construct electrical circuits to: a) investigate the relationship between potential difference, current and resistance for a resistor and a filament lamp b) test series and parallel circuits using resistors and filament lamps	
Lesson 7 Learning intentions	Background radiation Explain what is meant by background radiation.		Recycling Evaluate the advantages of recycling metals, including economic implications and	Transferring energy Recall that, when there is an electric current in a resistor,	

Lesson 8	Describe the origins of background radiation from Earth and space. Describe methods for measuring and detecting radioactivity limited to photographic film and a Geiger–Müller tube.	how recycling ca preserve both th environment and supply of valuabl materials. Describe that a li assessment for a involves consider the effect on the environment of of the raw material manufacturing th product, using th and disposing of product when it longer useful. Evaluate data fro cycle assessment product.	ewhich heats the resistorI theExplain that electrical energy is dissipated as thermal energy in the surroundings when an electrical current does work against electrical resistanceI theExplain the energy transfer (in 10.22 above) as the result of collisions between electrons and the ions in the latticeI theExplain ways of reducing unwanted energy transfer through low resistance wires of aI theDescribe the advantages and disadvantages of the heating effect of an electric currentUse the equation: energy transferred (joule, J) = current (ampere, A) × potential difference (volt, V) × time (second, s)	
Learning intentions	Recall the relative masses and relative electric charges of protons,	Recall that chem reactions are rev and the use of th ≓ in equations a	cal Describe power as the ersible energy transferred per e symbol	

	neutrons, electrons and	the direction of some	second and recall that it is
	positrons.		measured in watts
	positrons. Recall that an alpha particle is equivalent to a helium nucleus, a beta particle is an electron emitted from the nucleus and a gamma ray is electromagnetic radiation. Compare alpha, beta and gamma radiations in terms of their abilities to penetrate and ionise. Recall that alpha, β - (beta minus), β + (positron), gamma rays and neutron radiation are emitted from unstable nuclei in a	ammonia as a reversible	measured in watts Recall and use the equation: power (watt, W) = energy transferred (joule, J) \div time taken (second, s) P = E/t Explain how the power transfer in any circuit device is related to the potential difference across it and the current in it Recall and use the equations: electrical power (watt, W) = current (ampere, A) × potential difference
	random process. Recall that alpha, β – (beta minus), β + (positron) and gamma rays are ionising radiations.	atmospheres c) iron catalyst (H) Predict how the position of a dynamic equilibrium is affected by changes in: a) temperature b) pressure c) concentration	(volt, V) $P = I \times V$ electrical power (watt, W) = current squared (ampere ² , A^2) × resistance (ohms, Ω) $P = I^2 \times R$
Lesson 9 Learning intentions	Radioactive decayDescribe the process of β ⁻ decay (a neutron becomesa proton plus an electron)		Transferring energy byelectricityDescribe how, in differentdomestic devices, energy istransferred from batteries

[]		
	Describe the process of β^+	and the a.c. mains to the
	decay (a proton becomes a	energy of motors and
	neutron plus a positron)	heating devices
	Explain the effects on the	Explain the difference
	atomic (proton) number	between direct and
	and mass (nucleon)	alternating voltage
	number of radioactive	
	decays (α , β , γ and	Describe direct current (d.c.)
	neutron emission)	as movement of charge in
	Recall that nuclei that	one direction only and recall
	have undergone	that cells and batteries
	radioactive decay often	supply direct current (d.c.)
	undergo nuclear	Describe that in alternating
	rearrangement with a loss	current (a.c.) the movement
	of energy as gamma	of charge changes direction
	radiation.	
	Use given data to balance	Recall that in the UK the
	nuclear equations in terms	domestic supply is a.c., at a
	of mass and charge.	frequency of 50 Hz and a
	_	voltage of about 230 V
		Describe, with examples, the
		relationship between the
		power ratings for domestic
		electrical appliances and the
		changes in stored energy
		when they are in use
Lesson 10	Half-Life	Electrical safety
Learning	Describe how the activity	Explain the difference in
intentions	of a radioactive source	function between the live
	decreases over a period of	and the neutral mains input
	time.	wires.

	Recall that the unit of activity of a radioactive isotope is the Becquerel, Bq. Explain that the half-life of a radioactive isotope is the time taken for half the undecayed nuclei to decay or the activity of a source to decay by half. Explain that it cannot be predicted when a particular nucleus will decay but half-life enables the activity of a very large number of nuclei to be predicted during the decay process.	Explain the function of an earth wire and of fuses or circuit breakers in ensuring safety.Explain why switches and fuses should be connected in the live wire of a domestic circuit.Recall the potential differences between the live, neutral and earth mains wires.Explain the dangers of providing any connection between the live wire and earth.
	Use the concept of half-life to carry out simple calculations on the decay of a radioactive isotope, including graphical representations	
Lesson 11 Learning intentions	Dangers of radioactivity Describe the dangers of ionising radiation in terms of tissue damage and possible mutations and relate this to the precautions needed.	

Explain the precautions	
taken to ensure the safety	
of people exposed to	
radiation, including	
limiting the dose for	
patients and the risks to	
medical personnel.	
Describe the differences	
between contamination	
and irradiation effects and	
compare the hazards	
associated with these two.	