Chemistry AQA (7405)

Assessment Information:

All students will sit 3 external examinations at the end of year 13, which will cover content from both years of the A-Level. The exams are a mix of short and long written answers, calculations and multiple-choice questions.

Students will also be required to complete 12 Required Practicals over the 2 years. Skills will be assessed during these practicals through observations and questioning during the practical, and by the content of the written work in the student's lab book after the practical. Students must show consistent competency in these skills to obtain the practical accreditation on their Chemistry A-Level.

External examinations:

Paper 1

What's assessed

- Relevant Physical chemistry topics (sections 3.1.1 to 3.1.4, 3.1.6 to 3.1.8 and 3.1.10 to 3.1.12)
- Inorganic chemistry (Section 3.2)
- Relevant practical skills

How it's assessed

- written exam: 2 hours
- 105 marks
- 35% of A-level

Questions

105 marks of short and long answer questions

Relevant Physical chemistry topics (sections 3.1.2 to 3.1.6 and 3.1.9)

 Organic chemistry (Section 3.3)

What's assessed

Relevant practical skills

How it's assessed

- written exam: 2 hours
- 105 marks

Paper 2

35% of A-level

Questions

105 marks of short and long answer questions

Paper 3

What's assessed

- Any content
- Any practical skills

How it's assessed

- written exam: 2 hours
- 90 marks
- 30% of A-level

Questions

40 marks of questions on practical techniques and data analysis

20 marks of questions testing across the specification

30 marks of multiple choice questions

Practical Skills Assessments:

Students must complete practicals demonstrating use of key apparatus and techniques. They are also required to show competency of the CPAC statements below throughout their practical work.

Cor	mpetency	Practical mastery
1.	Follows written procedures	a. Correctly follows written instructions to carry out experimental techniques or procedures.
2.	Applies investigative approaches and methods when using instruments and equipment	a. Correctly uses appropriate instrumentation, apparatus and materials (including ICT) to carry out investigative activities, experimental techniques and procedures with minimal assistance or prompting.
		 b. Carries out techniques or procedures methodically, in sequence and in combination, identifying practical issues and making adjustments when necessary.
		c. Identifies and controls significant quantitative variables where applicable, and plans approaches to take account of variables that cannot readily be controlled.
		d. Selects appropriate equipment and measurement strategies in order to ensure suitably accurate results.
3.	Safely uses a range of practical equipment and materials	a. Identifies hazards and assesses risks associated with these hazards, making safety adjustments as necessary, when carrying out experimental techniques and procedures in the lab or field.
		b. Uses appropriate safety equipment and approaches to minimise risks with minimal prompting.
4.	Makes and records observations	a. Makes accurate observations relevant to the experimental or investigative procedure.
		b. Obtains accurate, precise and sufficient data for experimental and investigative procedures and records this methodically using appropriate units and conventions.
5.	Researches, references and reports	a. Uses appropriate software and/or tools to process data, carry out research and report findings.
		b. Cites sources of information demonstrating that research has taken place, supporting planning and conclusions.

Rationale

A Level Chemistry is taught according to the AQA scheme of work A. This means we follow a topic-by-topic approach and interleave sections where appropriate. The qualification is linear. Linear means that students will sit all the A-level exams at the end of their A-level course. The course is split into distinct topics which fall into organic, inorganic and physical chemistry. In the second year of the course, students will be expected to be able to draw on knowledge from both years of study and bring together their learning in a synoptic way. Practical skills are assessed throughout the year according to the CPAC guidance shared between exam boards.

Year 12:

Organic chemistry:

- Intro to organic
- Alkanes
- Halogenoalkanes
- Alkenes
- Alcohols

Organic analysis

- Inorganic chemistry:
 - Periodicity
 - Group 2, the alkaline earth metals
 - Group 7, the halogens
- Physical chemistry
 - Atomic structure
 - Amount of substance
 - Bonding
 - Energetics
 - Chemical equilibria, Le Chatelier's principle and $\ensuremath{\mbox{K}_{\mbox{c}}}$

Year 13:

Organic Chemistry:

- Optical isomerism
- Aldehydes and ketones
- Carboxylic acids and derivatives
- Aromatic chemistry
- Amines
- Polymers
- Amino acids, proteins and DNA
- Organic synthesis
- Nuclear magnetic resonance spectroscopy
- chromatography

Inorganic Chemistry:

- properties of period 3 elements and their oxides
- transition metals
- reactions of ions in aqueous solution

Physical Chemistry:

- thermodynamics
- rate equations
- equilibrium constant K_p
- Electron potential and electrochemical cells
- Acids and bases.

Students will be required to learn definitions, equations and recall facts for each topic by heart and will be quizzed on them every lesson. Lessons will include a mixture of new content and practice of skills. Students will be expected to remember recall facts throughout their chemistry course and their knowledge of all content will be checked throughout the course.

Key Resources (textbooks/videos/websites)

Title	Location
A level textbook	You have been loaned one from school
Chemguide	https://www.chemguide.co.uk/
Physics and Maths Tutor (exam questions and	https://www.physicsandmathstutor.com/
revision notes for all A-Level sciences)	
S-Cool Revision	https://s-cool.co.uk/a-level/chemistry
Chemistry World	https://www.chemistryworld.com/
Seneca Podcasts	https://senecalearning.com/en-
	GB/blog/chemistry-a-level-podcasts-by-
	<u>seneca/</u>
Youtube: A Level practicals	https://www.youtube.com/c/AdvancedC
	hemistrybyPrimroseKitten/videos
Youtube: A-Level Chemistry Revision	https://www.youtube.com/c/Freescienc
	elessons/playlists?view=50&sort=dd&sh
	<u>elf_id=8</u>
Youtube: Snap Revise	https://www.youtube.com/playlist?list=
	PLkocNW0BSuEFvnpnhj8fKN-KFUOInKiT0
Revisely: AI flashcards and AI quizzes	https://www.revisely.com/

Year 12

	Topic Area(s)	Learning Objectives	Flashback RP Opportunities	Out of Lesson Assignments	Pre-Learning Reading	Independent Learning
Week 1	Atomic Structure	Describe the structure of atoms, and details of the subatomic particles. Define atoms and isotopes in terms of P, N and E.	Atomic structure GCSE Properties of PNE.	100% Sheet Atomic structure	<u>http://www.rsc.org/c</u> <u>hemsoc/timeline</u>	Investigate how the model of the atom has changed over time. (AO1)
	Amount of Substance	Define and calculate relative mass of atoms, elements and compounds.	Atomic structure GCSE. PNE	100% Sheet Amounts of Substance	<u>http://www.docbrow</u> n.info/	Research why C ¹³ was chosen as the standard. (AO3)
	Atomic Structure	Explain how TOF-MS works and its uses. Describe the electron configuration of atoms and ions.	2,8,8 electron configuration (linked to spd orbitals) lons	100% Sheet Atomic structure and Mass Spec Electron configuration practice.	http://www.rsc.org/le arn- chemistry/resource/re s00001332/the-atom- detectives?cmpid=CM P00002843	Investigate the use of mass spectroscopy in drug testing athletes. (AO3)
Week 2					https://edu.rsc.org/re sources/a-model-of- mass- spectrometry/2390.ar ticle	
	Amount of Substance	Calculate using moles for solids and solutions.	Calculations GCSE. Definition of moles.	100% Sheet Amounts of Substance	https://docbrown.info /page13/page13c.htm	Research how Avogadro determined the value of his constant. (AO3)

	Topic Area(s)	Learning Objectives	Flashback RP Opportunities	Out of Lesson Assignments	Pre-Learning Reading	Independent Learning
Week 3	Atomic Structure	Write equations for ionisation energies. Explain how ionisation energy data provides evidence for electron configuration.	2,8,8 electron configuration (linked to spd orbitals) lons	100% Sheet Atomic structure and Mass Spec Exam question practice.	http://en.wikipedia.or g/wiki/Molar_ionizati on_energies_of_the_ elements	
	Amount of Substance	Perform calculations using the ideal gas equation.	Moles calculations	100% Sheet Amounts of Substance		Research how the behaviour of real gases deviates from ideal gas behaviour.
Week 4	Bonding	Understand ionic bonding Write formulas for ionic compounds. Understand covalent bonding. Draw molecules with lines and arrows showing covalent and co-ordinate bonds. Understand metallic bonding.	GCSE Chemistry - Structure and bonding - Periodic table AS Chemistry - Atoms	100% Sheet Bonding		Which of the following ionic compounds have the highest and lowest melting points: sodium chloride, potassium chloride; magnesium chloride – explain your reasoning?
	Amount of Substance	Calculate empirical and molecular formulae from data.	Empirical formula calculations GCSE.	100% Sheet Amounts of Substance	RSC resource on elemental microanalysis: http://www.nationals temcentre.org.uk/elib rary/resource/9890/el emental-microanalysis	Complete further reading: elemental microanalysis.

	Topic Area(s)	Learning Objectives	Flashback RP Opportunities	Out of Lesson Assignments	Pre-Learning Reading	Independent Learning
Week 5	Bonding	Work out the name and sketch and explain the shape of molecules and ions. Define electronegativity. Explain origins of polar covalent molecules. Deduce whether a bond is polar. Deduce whether a bond has a permanent dipole.	GCSE Chemistry - Structure and bonding - Periodic table AS Chemistry - Atoms	100% Sheet Bonding		
	Amount of Substance	Write balanced full and ionic equations.	Periodic table Atoms Ionic and covalent bonding	100% Sheet Amounts of Substance	https://www.s- cool.co.uk/gcse/chemi stry/writing-formulae- and-balancing- equations/revise- it/writing-equations	 Search for these past paper questions January 2011 Unit 1 Question 3 June 2010 Unit 1 Question 3 January 2009 Unit 1 Question 5
Week 6	Bonding	Describe the 3 types of intermolecular force. How IM forces affect melting and boiling points. The impact of hydrogen bonding on water and ice.	GCSE Chemistry - Structure and bonding AS Chemistry - Atoms	100% Sheet Bonding		Rich Question – Why is there no hydrogen bonding between molecules of HCl gas even though Cl is more electronegative than N, yet NH ₃ has hydrogen bonding?

	Topic Area(s)	Learning Objectives	Flashback RP Opportunities	Out of Lesson Assignments	Pre-Learning Reading	Independent Learning
	Amount of Substance	Use equations to calculate masses, percentage yields, atom economies, volumes of gases, concentrations and volumes of solutions. Titration	Balancing equations	100% Sheet Amounts of Substance	https://www.bbc.co.u k/bitesize/guides/z8fv vcw/revision/5	
eek 7	Bonding	Understand the structures of ionic, molecular, giant covalent and metallic substances. Describe and Sketch details of the structures of diamond, graphite, ice, iodine, magnesium and sodium chloride.	GCSE Chemistry - Structure and bonding AS Chemistry - Atoms	100% Sheet Bonding		
Wé	Amount of substance	Use equations to calculate masses, percentage yields, atom economies, volumes of gases, concentrations and volumes of solutions. Titration	Balancing equations Moles Stoichiometry	100% Sheet Amounts of Substance	https://www.bbc.co.u k/bitesize/guides/z8fv vcw/revision/5	 Search for these past paper questions January 2011 Unit 1 Question 3 June 2010 Unit 1 Question 3 January 2009 Unit 1 Question 5

	Topic Area(s)	Learning Objectives	Flashback RP Opportunities	Out of Lesson Assignments	Pre-Learning Reading	Independent Learning
8 48	Introduction to Organic	Understand the different types of formulas used in organic chemistry. Understand what is meant by a homologous series. Draw and name organic molecules with chains and rings with up to six carbon atoms each.	GCSE Chemistry - Some simple organic chemistry, eg alkanes and alkenes AS Chemistry - Empirical and molecular formulas	100% Sheet Intro- nomenclature		Naming hydrocarbons activity http://www.rsc.org/le arn- chemistry/resource/re s00000110/afl- naming-hydrocarbons
Wee	Enthalpy	Know that reactions can be exothermic or endothermic. Know what an enthalpy change and is and about standard conditions. Define standard enthalpies of formation and combustion.	GCSE Chemistry - Exothermic and endothermic reactions.	100% sheet Enthalpy	Some everyday examples of exothermic and endothermic reactions: <u>http://antoine.frostbu</u> <u>rg.edu/chem/senese/</u> <u>101/thermo/faq/exot</u> <u>hermic-endothermic- examples.shtml</u>	
Week 9			PAZ			

	Topic Area(s)	Learning Objectives	Flashback RP Opportunities	Out of Lesson Assignments	Pre-Learning Reading	Independent Learning
Week 10	Introduction to Organic	Understand the difference between structural and stereoisomerism. Understand the three types of structural isomerism: chain, position and functional group. Understand the cause of <i>E</i> – <i>Z</i> isomerism. Draw and name <i>E</i> – <i>Z</i> isomers using CIP priority rules.	GCSE Chemistry - Some simple organic chemistry, eg alkanes and alkenes AS Chemistry - Empirical and molecular formulas	100% Sheet Intro- nomenclature and Intro – Spatial representation	A brief guide to the types of isomerism: <u>https://www.compou</u> <u>ndchem.com/2014/05</u> /22/typesofisomerism /	Complete the following exam questions • June 2011 Unit 2 Question 6a and 6b • June 2003 Unit 3 Question 3a • June 2003 Unit 3 Question 4a
	Enthalpy	Understand and be able to use the equation $q = mc\Delta T$ to calculate molar enthalpy changes.	GCSE Chemistry - Exothermic and endothermic reactions.	100% sheet Enthalpy		Search for the following exam questions: January 2011 Unit 2 Question 9b and 9d June 2009 Unit 2 Question 3 June 2006 Unit 2 Question 1d
Week 11	Alkanes	Understand what alkanes are. Understand how fractional distillation can be used to separate the alkanes in crude oil.	GCSE Chemistry - Some simple organic chemistry, eg alkanes and alkenes - Fractional distillation of crude oil AS Chemistry - Empirical and molecular formulae	100% Sheet Alkanes		RSC Videos and animations on fractional distillation of crude oil http://www.rsc.org/le arn- chemistry/resource/re s0000027/oil- refining#!cmpid=CMP 00002022

	Topic Area(s)	Learning Objectives	Flashback RP Opportunities	Out of Lesson Assignments	Pre-Learning Reading	Independent Learning
	Enthalpy	Required practical 2 Measurement of an enthalpy change.	GCSE Chemistry - Exothermic and endothermic reactions.	100% sheet Enthalpy		Research how accurate values are found for the energy content in food and fuels
Week 12	Alkanes	Understand why cracking is useful. Compare how thermal and catalytic cracking are completed and the types of compounds that are produced.	GCSE Chemistry - Some simple organic chemistry, eg alkanes and alkenes - Fractional distillation of crude oil AS Chemistry - Empirical and molecular formulae GCSE Chemistry	Construct a table to compare thermal and catalytic cracking in terms of conditions and products.	Chemistry Review article: Catalysis: heterogeneous catalysis (volume 23, edition 1)	RSC Videos and animations on cracking <u>http://www.rsc.org/le</u> <u>arn- chemistry/resource/re</u> <u>s00000027/oil-</u> <u>refining#!cmpid=CMP</u> <u>00002022</u>
	Сппару	Use Hess's law to calculate enthalpy changes using enthalpies of formation and combustion.	- Exothermic and endothermic reactions.	100% sheet Enthalpy		
Week 13	Alkanes	Know what is formed when alkanes are burned as fuels. Know/consider how pollution problems from burning alkanes can be reduced.	GCSE Chemistry - Some simple organic chemistry, eg alkanes and alkenes - Fractional distillation of crude oil AS Chemistry - Empirical and molecular formulae	100% Sheets Alkanes and Pollution	Anecdote about a plane running out of fuel <u>http://www.rsc.org/le</u> <u>arn-</u> <u>chemistry/resource/re</u> <u>s00000037/anecdotes</u> <u>-gimli-glider</u>	Search for the following exam questions: • June 2010 Unit 1 Question 4 • June 2010 Unit 1 Question 5 • January 2004 Unit 3 Question 2

	Topic Area(s)	Learning Objectives	Flashback RP Opportunities	Out of Lesson Assignments	Pre-Learning Reading	Independent Learning
	Enthalpy	Understand Hess's law. Use Hess's law to calculate enthalpy changes using enthalpies of formation and combustion.	GCSE Chemistry - Exothermic and endothermic reactions.	100% sheet Enthalpy		Search for the following exam questions: • January 2013 Unit 2 Question 3a • January 2013 Unit 2 Question 4 • June 2012 Unit 2 Question 2a
Week 14	Alkanes	Equations and mechanism for reaction of alkanes with halogens.	GCSE Chemistry - Some simple organic chemistry, eg alkanes and alkenes - Fractional distillation of crude oil AS Chemistry - Empirical and molecular formulae	100% Sheets Halogenoalkanes	RSC resource of misconceptions about mechanisms: <u>http://www.rsc.org/le</u> <u>arn-</u> <u>chemistry/resource/re</u> <u>s00001107/reaction-</u> <u>mechanisms</u>	Complete the following exam questions: June 2003 Unit 3 Question 2 June 2012 Unit 2 Question 6a
	Enthalpy	Required practical 2 Measurement of an enthalpy change.	GCSE Chemistry - Exothermic and endothermic reactions.	100% sheet Enthalpy		
Week 15	Halogenoalkanes	The polar nature of the C- halogen bond. Nucleophilic substitution reactions with OH [,] CN ⁻ and NH ₃ . Relative rate of reaction of halogenoalkanes.	AS Chemistry - Nomenclature of organic compounds - Principles of curly arrow mechanisms	100% Sheets Halogenoalkanes	Nobel Prize 1995 http://www.nobelpriz e.org/nobel_prizes/ch emistry/laureates/199 5/press.html	RSC AfL task on nucleophilic substitution <u>http://www.rsc.org/le</u> <u>arn-</u> <u>chemistry/resource/re</u> <u>s00000115/afl-</u> <u>nucleophilic-</u> <u>substitution-reaction-</u> <u>mechanisms</u>

	Topic Area(s)	Learning Objectives	Flashback RP Opportunities	Out of Lesson Assignments	Pre-Learning Reading	Independent Learning
	Enthalpy	Understand the term mean bond enthalpy. Use mean bond enthalpies to calculate approximate values for ΔH for reactions Understand why most bond enthalpies are mean values.	GCSE Chemistry - Exothermic and endothermic reactions.	100% sheet Enthalpy		 Search for the following exam questions: January 2013 Unit 2 Question 6 January 2006 Unit 2 Question 1
16	Halogenoalkanes	The concurrent substitution and elimination reactions of a halogenoalkane.	AS Chemistry - Nomenclature of organic compounds - Principles of curly arrow mechanisms	100% Sheets Halogenoalkanes	RSC mechanisms resource: http://www.rsc.org/le arn- chemistry/resource/re s00000638/curly- arrows-and- stereoselectivity-in- organic-reactions	Complete the following questions: • June 2013 Unit 2 Question 5 • January 2011 Unit 2 Question 8 • January 2010 Unit 2 Question 7
Week	Kinetics	Collision theory. Drawing Maxwell– Boltzmann distribution curves.	GCSE Chemistry - Reaction rates.	100% sheet Kinetics		Collision theory simulator: <u>http://www.kscience.</u> <u>co.uk/animations/colli</u> <u>sion.htm</u> Maxwell–Boltzmann curve simulator: <u>http://www.docbrow</u> <u>n.info/BBCbasic/kpts.</u> <u>htm</u>

	Topic Area(s)	Learning Objectives	Flashback RP Opportunities	Out of Lesson Assignments	Pre-Learning Reading	Independent Learning
Week 17	Halogenoalkanes	 What ozone is and its role in the atmosphere. How Cl free radicals are formed in the atmosphere and how they destroy ozone. How research evidence led to the end of use of CFCs and alternatives found. 	AS Chemistry - Nomenclature of organic compounds - Principles of curly arrow mechanisms	100% Sheets Halogenoalkanes	Chemistry Review article: Do ants destroy the ozone layer (Volume 20, edition 4) Chemistry Review article: Thomas Midgley (Volume 15, edition 2)	Rich question – CFCs are still used in some countries – how can we stop this?
	Kinetics	Understand how and why temperature affects the rate of chemical reactions. Required practical 3 Investigation of how the rate of a reaction changes with temperature.	GCSE Chemistry - Reaction rates.	100% sheet Kinetics		Sodium thiosulfate practical: <u>http://www.rsc.org/le</u> <u>arn-</u> <u>chemistry/resource/re</u> <u>s00000448/the-effect-</u> <u>of-temperature-on-</u> <u>reaction-rate</u>
Week 18			PAZ			
Week 19	Alkenes	Draw alkenes Understand that the double bond is an area of high electron density.	AS Chemistry - <i>E</i> – <i>Z</i> isomerism (3.3.1). - Principles of curly arrow mechanisms (3.3.1). - Shapes of molecules (3.1.3).	100% sheet Alkenes		

	Topic Area(s)	Learning Objectives	Flashback RP Opportunities	Out of Lesson Assignments	Pre-Learning Reading	Independent Learning
	Kinetics	Understand how and why concentration and pressure affect the rate of chemical reactions.	GCSE Chemistry - Reaction rates.	100% sheet Kinetics		Find the following exam question. • June 2012 Unit 2 Question 1a, 1b, 1c and 1d
Week 20	Alkenes	To be able to identify, state conditions and reagents, and draw mechanisms for electrophilic addition reactions of alkenes with HBr, H ₂ SO ₄ and Br ₂	Structure of double bonds.	100% sheet Alkenes	RSC resource of misconceptions about mechanisms: <u>http://www.rsc.org/le</u> <u>arn-</u> <u>chemistry/resource/re</u> <u>s00001107/reaction-</u> <u>mechanisms</u>	Mechanism animations http://science.jbpub.c om/organic/movies/ Find the following exam question. • June 2012 Unit 2 Question 7
	KINETICS	Understand how and why a catalyst affects the rate of	GCSE Chemistry - Reaction rates.	100% sheet Kinetics		Research the use of catalysts in catalytic
		chemical reactions.				converters in cars

	Topic Area(s)	Learning Objectives	Flashback	Out of Lesson	Pre-Learning	Independent Learning
			RP Opportunities	Assignments	Reading	
	Alkenes	Describe what a polymer is	Uses of polymers	100% sheet Alkenes	Nuffield Practical	RSC Polymers
			GCSE		Chemistry method to	resource
		Identify the repeating unit			polymerise	http://www.rsc.org/le
		of an addition polymer			phenylethene	arn-
		given the monomer			http://www.nuffieldfo	<u>chemistry/resource/re</u>
		structure and vice versa			undation.org/practical	s00000846/polymers
					-chemistry/addition-	
		Name polymers from the			polymerisation	
: 21		Name of the monomer Explain how polymers have				
Week		developed over time				
		Give some uses of PVC and				
		how plasticisers can change its properties				
		Explain why addition				
		polymers are unreactive				
		Explain the nature of the				
		intermolecular forces				
		between polyalkene				
		molecules.				

Γ		Topic Area(s)	Learning Objectives	Flashback RP Opportunities	Out of Lesson Assignments	Pre-Learning Reading	Independent Learning
		Equilibria, Le Chatelier and Kc	Understand how reversible reactions can reach a state of dynamic equilibrium. Understand Le Chatelier's principle. Understand why a compromise temperature and pressure may be used for a reversible reaction in an industrial process.	GCSE Chemistry - Reaction rates. - Exothermic and endothermic reactions. AS Chemistry - Energetics - Kinetics	100% sheet Equilibria	RSC Resource pack on equilibria http://www.rsc.org/le arn- chemistry/resource/re s00000843/equilibria	 Find the following exam questions June 2013 Unit 2 Question 10a June 2013 Unit 2 Question 1a
	Week 22	Alkenes	Write equations and mechanisms for reactions of alkenes with HBr, H ₂ SO ₄ and HBr Explain the potential formation of major and minor products in these reactions.	AS Chemistry - Energetics - Bonding - Intro to organic	100% sheet Alkenes	RSC resource of misconceptions about mechanisms: http://www.rsc.org/le arn- chemistry/resource/re s00001107/reaction- mechanisms Mechanism animations http://science.jbpub.c om/organic/movies/	 Find the following exam questions. June 2010 Unit 2 Question 6a
		Equilibria, Le Chatelier and Kc	Understand the effect of a catalyst on an equilibrium.	GCSE Chemistry - Reaction rates. - Exothermic and endothermic reactions. AS Chemistry - Energetics - Kinetics	100% sheet Equilibria		Research some compromise conditions in an industrial process, focusing on why they are used.

	Topic Area(s)	Learning Objectives	Flashback RP Opportunities	Out of Lesson Assignments	Pre-Learning Reading	Independent Learning
Week 23	Alkenes – Addition Polymers	Describe what a polymer is. Identify the repeating unit of an addition polymer given the monomer structure and vice versa. Name polymers from the name of the monomer. Explain how polymers have developed over time. Give some uses of pvc and how plasticisers can change its properties. Explain why addition polymers are unreactive. Explain the nature of the intermolecular forces between polyalkene molecules.	Polymers early organic chem. Polymers GCSE Covalent bonding IM forces	100% sheet Alkenes	RSC Polymers resource http://www.rsc.org/le arn- chemistry/resource/re s00000846/polymers	 Find the following exam questions. June 2012 Unit 2 Question 7 June 2010 Unit 2 Question 6a
	Equilibria, Le Chatelier and Kc	Write an expression for and calculate K_c including units. Predict the effect, if any, of changes in conditions on the value of K_c .	GCSE Chemistry - Reaction rates. - Exothermic and endothermic reactions. - Equilibria AS Chemistry - Energetics - Kinetics	100% sheet Equilibria		 Find the following exam questions June 2013 Unit 4 Question 2 (QS13.4.02) January 2010 Unit 4 Question 1 (QW10.04.01)

	Topic Area(s)	Learning Objectives	Flashback RP Opportunities	Out of Lesson Assignments	Pre-Learning Reading	Independent Learning
Week 24	Alcohols	 Write equations and give conditions for the production of alcohols by hydration of alkenes Outline the mechanism for formation of ethanol from reaction of ethene with steam with an acid catalyst Write an equation, give and justify conditions for the production of ethanol by fermentation of glucose Compare the two methods of producing ethanol Explain the meaning of the term biofuel Evaluate the use of ethanol as a biofuel Show using equations how ethanol made by fermentation can be regarded as carbon neutral but that in reality it is not. 	Alkenes	100% Sheets Alcohols	Biofuels website: http://www.biofuels.c o.uk/ Press report about problems with biofuels: http://www.telegraph .co.uk/earth/energy/b iofuels/10520736/The -great-biofuels- scandal.html	Find the following exam questions • January 2005 Unit 3 Question 5a, 5b and 5c (QW.05.3.05) • January 2002 Unit 3 Question 7 (QW02.3.07)
	REDOX	Oxidation and reduction in terms of electron transfer. Oxidation states.	AS Chemistry - Writing equations	100% sheet REDOX		

	Topic Area(s)	Learning Objectives	Flashback RP Opportunities	Out of Lesson Assignments	Pre-Learning Reading	Independent Learning
k 25	Alcohols	Classify alcohols as primary, secondary or tertiary. Identify products and write equations for oxidation reactions of alcohols.	Alkenes, specifically structures (primary, secondary or tertiary).	100% Sheets Alcohols	Chemistry Review article: Oxidation of alcohols (Volume 10, edition 4)	Investigate how a roadside breathalyser works (AO3 - Analyse, interpret and evaluate scientific information).
Wee	REDOX	Writing redox half equations and full equations.	AS Chemistry - Writing equations	100% sheet REDOX		Find the following exam questions June 2013 Unit 2 Question 4a January 2012 Unit 2 Question 5a and 5b June 2011 Unit 2 Question 5a
.6	Alcohols	Use chemical tests to distinguish aldehydes and ketones.	Identification of functional groups	100% Sheets Alcohols 100% Sheets Aldehydes and Ketones		Giant silver mirror http://www.nuffieldfo undation.org/practical -chemistry/giant- silver-mirror
Week 2	Periodicity	How elements are classified as s, p, d or f block elements. Trends in atomic radius, ionisation energy and melting point across Period 3.	AS Chemistry - Electron structure - Ionisation energy - Bonding	Exam Questions • January 2011 Unit 1 Question 5 • January 2009 Unit 1 Question 4 • June 2003 Unit 1 Question 1c		Rich question: Is helium an s or p block element?

	Topic Area(s)	Learning Objectives	Flashback RP Opportunities	Out of Lesson Assignments	Pre-Learning Reading	Independent Learning
ek27	Alcohols	Identify products of alcohol elimination reactions Write equations and mechanism for alcohol elimination reactions Understand how addition polymers can be made from alkenes made this way without using monomers derived from crude oil.	Mechanism rules	100% Sheets Alcohols Mechanism mind map		
We	Group 2, the Alkaline Earth Metals	Trends in atomic radius, first ionisation energy and melting point. How elements Mg–Ba react with water.	GCSE Chemistry - Writing formulas of ionic compounds. AS Chemistry - Ionisation energy - Bonding	100% sheet Group 2	Newspaper story about changes to recipe of milk of magnesia in 2013: http://www.dailymail. co.uk/news/article- 2352139/Milk- Magnesia-disappears- British-shelves- ingredients-fall-foul- EU-meddlers.html	 research the uses of the following: Mg(OH)₂ and BaSO₄ in medicine Ca(OH)₂ in agriculture
Week 28	Alcohols	Required practical 5 Distillation of a product from a reaction.	GCSE distillation core practical	Lab report	Chemistry Review article: Heating under reflux (Volume 20, edition 2) Chemistry Review article: Distillation (Volume 14, edition 3)	

	Topic Area(s)	Learning Objectives	Flashback RP Opportunities	Out of Lesson Assignments	Pre-Learning Reading	Independent Learning
	Group 2, the Alkaline Earth Metals	Solubility and some uses of Group 2 sulfates and hydroxides. Uses of Mg in the extraction of Ti and CaO/CaCO ₃ in removing SO ₂ from flue gases.	GCSE Chemistry - Writing formulas of ionic compounds. AS Chemistry - Ionisation energy - Bonding	100% sheet Group 2	Royal College of Radiologists leaflet on barium meals: <u>https://www.rcr.ac.uk</u> /docs/patients/wordd ocs/CRPLG_meal.doc	Complete the following exam questions • June 2012 Unit 2 Question 5 • June 2006 Unit 1 Question 5a • January 2005 Unit 1 Question 5b
iek 29	Organic Analysis	Required practical 6 Tests for alcohol, aldehyde, alkene and carboxylic acid. Carry out test-tube reactions in the specification to distinguish alcohols, aldehydes, alkenes and carboxylic acids, and interpret the observations from these reactions.	AS organic topics – analysis of organics	100% sheet Organic Analysis	Chemistry Review article: Identifying an unknown compound (Volume 17, edition 3)	
Ŵ	Group 7, the halogens	Trends in electronegativity and boiling point down Group 7. Trends in oxidising power of halogens and reducing power of halide ions. Use of acidified silver nitrate to identify halide ions.	AS Chemistry - Ionisation energy - Ionic equations - Electronegativity - Bonding - Oxidation states and redox equations	100% sheet Group 7	Chemistry Review article: Iodine in medicine (Volume 23, edition 1)	Complete the following exam questions • June 2002 Unit 2 Question 4 • June 2002 Unit 2 Question 3 • January 2002 Unit 2 Question 8

	Topic Area(s)	Learning Objectives	Flashback RP Opportunities	Out of Lesson Assignments	Pre-Learning Reading	Independent Learning
Week 30	Organic Analysis	Required practical 6 Tests for alcohol, aldehyde, alkene and carboxylic acid. Carry out test-tube reactions in the specification to distinguish alcohols, aldehydes, alkenes and carboxylic acids, and interpret the observations from these reactions.	AS organic topics – analysis of organics	100% sheet Organic Analysis	Chemistry Review article: Identifying an unknown compound (Volume 17, edition 3)	
	Group 7, the halogens	Required practical 4 Carry out simple test-tube reactions in aqueous solution to identify cations (Group 2, NH_4^+) and anions (Group 7 (halide), OH^- , $CO_3^{2^-}$, $SO_4^{2^-}$).	AS Chemistry - Ionisation energy - Ionic equations - Electronegativity - Bonding - Oxidation states and redox equations	100% sheet Group 7	Use of silver halides in non-digital photography <u>http://electronics.ho</u> <u>wstuffworks.com/film</u> <u>7.htm</u>	
Week 31	Organic Analysis	Use high resolution mass spectrometry to find molecular formulae.	AS – atomic structure	100% sheet Organic Analysis – Mass Spec		Complete the following questions: • June 2012 Unit 2 Question 3c (QS12.2.03) • January 2010 Unit 2 Question 6e (QW10.2.06)

	Topic Area(s)	Learning Objectives	Flashback RP Opportunities	Out of Lesson Assignments	Pre-Learning Reading	Independent Learning
	Group 7, the halogens	Reactions of chlorine with water and use of chlorine in water treatment. Reaction of chlorine with sodium hydroxide and use of this reaction.	AS Chemistry - Ionisation energy - Ionic equations - Electronegativity - Bonding - Oxidation states and redox equations	100% sheet Group 7	Review by University of York of fluoridation of water <u>http://www.york.ac.u</u> <u>k/inst/crd/fluores.htm</u>	Complete the following questions: January 2013 Unit 2 Question 10 January 2010 Unit 2 Question 10a, 10b and 10c
Week 32	Organic Analysis	Use infrared absorptions to identify functional groups. Know how the "fingerprint" region can be used. The role of infrared absorption by molecule in global warming.	Bonding and structure. Mass spec.	100% sheet Organic Analysis - IR	Chemistry Review article: Infrared spectrometers (Volume 21, edition 2)	IR spectroscopy resources: <u>http://www.chemshe</u> <u>ets.co.uk/page3.html</u>
Week 33 - 35		Clo	Question practice and resing gaps and individualis	ecall practice. sed interventions.		

	Topic Area(s)	Learning Objectives	Flashback RP Opportunities	Out of Lesson Assignments	Pre-Learning Reading	Independent Learning
Week 36 - 37			PAZ			

Year 13

	Topic Area(s)	Learning Objectives	Flashback	Out of Lesson	Pre-Learning	Independent Learning
			RP Opportunities	Assignments	Reading	
	Thermodynamics	Define lattice enthalpy (formation and dissociation), enthalpy of formation, ionisation enthalpy, enthalpy of atomisation, bond enthalpy, electron affinity, enthalpy of solution, hydration enthalpy	3.1.4 – Energetics	100 % Sheets	Textbook – AS energetics	Rich question – predict the relative magnitude of the lattice enthalpy of the following compounds: aluminium oxide, potassium oxide, sodium chloride, sodium oxide.
		Draw and use Born–Haber				Exam Questions:
ek 1		cycles to find missing values of enthalpy changes				 June 2013 Unit 5 Question 1 (Q\$13.5.01)
Wee		Comment on the covalent character of an ionic compounds by comparing lattice enthalpies found				• June 2013 Unit 5 Question 2 (QS13.5.02)
		using Born–Haber cycles with those calculated theoretically using the perfect ionic model				Rich question – for an ionic compound with covalent character, deduce whether the lattice enthalpy will have a greater or smaller magnitude than that calculated theoretically from the
						perfect ionic

	Thermodynamics	Describe entropy in terms	3.1.4 – Energetics	100 % Sheets	Exam Questions:
		of disorder Predict whether reactions have an increase or decrease in entropy			 June 2013 Unit 5 Question 3 (QS13.5.03) January 2012 Unit 5 Question 2 (QW12.5.02)
		Calculate the entropy change for a reaction			
Week 2		Calculate the gibbs free- energy change for a reaction at a given temperature			
		Determine whether a reaction is feasible at a given temperature			
		Calculate the temperature at which a reaction becomes feasible			
		Use entropy changes to explain why some endothermic reactions are feasible.			

	Rates of Reaction	Define the terms order of reaction and rate constant Describe how changing concentration of a reagent affects the rate when the order with respect that reagent is 0, 1 or 2	AS Chemistry - 3.1.5 – Kinetics.	100 % Sheets	Chemistry Review article: Establishing a rate equation (Volume 14, edition 2)	
Week 3		Determine the values and units for rate constants given appropriate data Describe how rate constants change with temperature Perform calculations using the arrhenius equation Plot straight line graphs of In k versus 1/t to determine the activation energy of a reaction				

	Rates of Reaction	Explain that rate equations can only be determined by experiment Use concentration-time	AS Chemistry - 3.1.5 – Kinetics.	100 % Sheets	Chemistry Review article: Establishing a rate equation (Volume 14, edition 2)	Exam Questions: • June 2013 Unit 4 Question 1 (QS13.4.01)
Week 4		graphs to find rates (including initial rates) Use initial rate data to determine rate equations Use rate-concentration data/graphs to find orders of reaction with respect to a reagent Link rate equations to mechanism and determine rate determining steps. Required practical 7 Measure the rate of a reaction by an initial rate method, and a continuous monitoring method.			ILPAC Unit P5: Chemical Kinetics (free download from <u>www.nationalstemcen</u> <u>tre.org.uk</u>) Avogadro web site on rate equations: <u>http://www.avogadro</u> <u>.co.uk/kinetics/rate_e</u> <u>quation.htm</u>	 January 2013 Unit 4 Question 1 (QW13.4.01) January 2011 Unit 4 Question 1 (QW11.4.01)

	Optical Isomerism	Explain the cause of optical isomerism	AS Chemistry - 3.3.1.3 – Isomerism.	100 % Sheets	Chemistry Review article: Looking in the mirror (Volume 10	
	exhibit optical isomerism/that are optically active.	exhibit optical isomerism/that are optically active.	A-level Chemistry - 3.3.8 – Aldehydes and ketones		edition 3)	
к 5		Draw pairs of optical isomers in 3d				
Week		Describe how enantiomers affect plane polarised light				
		Explain what a racemic mixture is, how they can be formed, and their effect on plane polarised light.				

Aldehydes and Ketones	Write equations and know reagents and conditions to oxidise aldehydes to carboxylic	AS Chemistry - 3.3.1.1 – Nomenclature - 3.3.1.2 – Reaction mechanisms	100 % Sheets	Exam Question: • January 2010 Unit 4 Question 4 (QW10.4.04)
	acids Know how to distinguish aldehydes and ketones Write equations, know reagents and conditions and outline the mechanism to reduce aldehydes and ketones to alcohols with nabh ₄ Write equations, know reagents and conditions and outline the	- 3.3.5.2 – Oxidation of alcohols		Research Opportunity Why are KCN/HCN are highly toxic (AO3 - Analyse, interpret and evaluate scientific information).
	mechanism for reaction of aldehydes and ketones with KCN and acid			
	Understand why reaction of aldehydes and ketones with KCN followed by acid can form a racemic mixture			
	Students understand the hazards of using KCN			

	Carboxylic Acids and Their Derivatives	Draw the structure of and name carboxylic acids and esters Know how carboxylic acids react with carbonates	AS Chemistry - 3.3.1.1 – Nomenclature. - 3.3.1.2 – Reaction mechanisms. - 3.3.5.2 – Oxidation of alcohols.	100 % Sheets	Molecule of the month: Esters in fruits http://www.chm.bris. ac.uk/motm/ethylacet ate/ethylv.htm	
9	Write equations for the reaction of carboxylic acids with alcohols to form esters	Write equations for the reaction of carboxylic acids with alcohols to form esters			Press report about problems with biofuels:	
ek 6		Know some common uses of esters			http://www.telegraph .co.uk/earth/energy/b	
Weel		Write equations for the hydrolysis of esters in acidic or alkaline conditions			<u>iofuels/10520736/The</u> <u>-great-biofuels-</u> <u>scandal.html</u>	
		Understand the structure of animals fats and vegetable oils				
		Know how soap and biodiesel are made and write equations for these reactions for specified fats/oils.				

Week 7	Carboxylic Acids and Their Derivatives	Draw the structure of and name acid anhydrides, acyl chlorides and amides Identify the products of and write equations for acylation reactions of water, alcohols, ammonia and amines with acyl chlorides and acid anhydrides Outline the mechanism for the acylation reactions of acyl chlorides	AS Chemistry - 3.3.1.1 – Nomenclature. - 3.3.1.2 – Reaction mechanisms. - 3.3.5.2 – Oxidation of alcohols.	100 % Sheets		Exam Question: • January 2012 Unit 4 Question 10a (QW12.4.10)
Week 8	Carboxylic Acids and Their Derivatives	State advantages of using ethanoic anhydride rather than ethanoyl chloride in the production of aspirin Prepare and purity an organic solid and test its purity. Required practical 10 Preparation of - a pure organic solid and test of its purity - a pure organic liquid.	AS Chemistry - 3.3.1.1 – Nomenclature. - 3.3.1.2 – Reaction mechanisms. - 3.3.5.2 – Oxidation of alcohols.	100 % Sheets	RSC resource on aspirin: http://www.rsc.org/le arn- chemistry/resource/re s00000056/aspirin Aspirin Pre-lab Screen Experiment: http://www.rsc.org/le arn- chemistry/resource/re s00001644/aspirin- screen-experiment	

Week 9			PAZ			
Week 10	Кр	Calculate equilibrium quantities, mole fractions and partial pressures for equilibrium mixtures Write an expression for k_p for a reaction and calculate the value of k_p with units Predict and justify how changes in temperature and pressure affect the position of an equilibrium, and how this may or may not affect the value of k_p Understand how a catalyst affects an equilibrium and the value of k_p .	AS Chemistry - 3.1.6 – Chemical equilibria, Le Châtelier's principle and K _c	100 % Sheets	Read and complete questions on topic 3.1.6 from text book.	Exam Questions: • January 2009 Unit 4 Question 3 (QW09.4.03) • June 2009 Unit 4 Question 2 (QS09.4.02)

Acids and Bases	Define Brønsted–Lowry acids and bases Identify species as Brønsted–Lowry acids or bases in proton transfer reactions. Calculate ph of a strong acid from its concentration Calculate the concentration of a strong acid from its ph Calculate the ph of when a strong acid is diluted. Show that $K_w = [H^+][OH^-]$ Use K_w to find the ph of strong bases from its concentration, and vice versa Calculate the ph of water at different temperatures	AS Chemistry - 3.1.6 – Chemical equilibria, Le Châtelier's principle and K _c	100 % Sheets	Theory of acids history websites: http://www.bbc.co.uk /dna/ptop/plain/A708 257 http://pubs.acs.org/su bscribe/archive/tcaw/ 12/i03/pdf/303chroni cles.pdf RSC acid-base simulator: http://www.rsc.org/le arn- chemistry/resource/re s00001457/acid-base- solutions-rsc-funded RSC pH simulator: http://www.rsc.org/le arn- chemistry/resource/re s00001458/ph-scale- simulation-rsc-funded	Rich Task - Estimate the number of H ⁺ ions in a drop of water <u>http://www.rsc.org/le</u> <u>arn-</u> <u>chemistry/resource/re</u> <u>s00000665/h-ions-in-</u> <u>water</u>
-----------------	--	--	--------------	--	---

	Acids and Bases	 Write expressions for K_a for stated weak acids Perform calculations linking K_a to concentration and ph Convert K_a values to pk_a and vice versa Calculate the ph of water at different temperatures. Calculate ph of a mixture of a strong acid with a strong base Calculate the ph of a mixture of a weak acid with a strong base Sketch ph curves for titrations of strong/weak acids with strong/weak bases Choose a suitable indicator for acid-base titrations. Required practical 9 Investigate how pH changes when a weak acid reacts with a strong base and when a strong acid reacts with a weak base. 	AS Chemistry - 3.1.6 – Chemical equilibria, Le Châtelier's principle and K _c	100 % Sheets	Creative problem solving in Chemistry – weak acids: http://www.rsc.org/le arn- chemistry/resource/re s00000677/a-weak- acid	Exam Questions: • January 2012 Unit 4 Question 4b (QW12.4.04) • June 2013 Unit 4 Question 3 (QS13.4.03) • June 2011 Unit 4 Question 1 (QS11.4.01)
--	-----------------	--	--	--------------	--	--

Week 13	Acids and Bases	Describe what a buffer solution is and how it is made Explain qualitatively how acidic/basic buffer solutions work Know some uses of buffer solutions Calculate the ph of a buffer solution.	AS Chemistry - 3.1.6 – Chemical equilibria, Le Châtelier's principle and <i>K</i> _c	100 % Sheets		Exam Questions • January 2013 Unit 4 Question 2 (QW13.4.02) • January 2011 Unit 4 Question 2 (QW11.4.02)
Week 14	Aromatic Chemistry	Describe the structure of benzene and explain how delocalisation makes benzene more stable than the theoretical cyclohexa- 1,3,5-triene Use thermochemical evidence from enthalpies of hydrogenation to account for this extra stability Explain why benzene undergoes substitution reactions in preference to addition reactions.	AS Chemistry - 3.3.1.1 – Nomenclature. - 3.3.1.2 – Reaction mechanisms. 3.3.10.1 Bonding	100 % Sheets	Chemistry Review article: The structure of benzene (Volume 1, edition 1) Chemistry Review article: Who discovered the structure of benzene (Volume 5, edition 1)	

Week 15	Aromatic Chemistry	Write equations and outline mechanisms for nitration and Friedel- Crafts acylation reactions of aromatic compounds. (including equations for the formation of electrophiles) Understand the usefulness of nitration and Friedel-Crafts acylation reactions	AS Chemistry - 3.3.1.1 – Nomenclature. - 3.3.1.2 – Reaction mechanisms. 3.3.10.1 Bonding	100 % Sheets	<i>Chemistry review</i> article: Probably the most important reactions in the world (Volume 15, edition 2)	Exam Questions • January 2012 Unit 4 Question 9a (QW12.4.09) • January 2011 Unit 4 Question 6 (QW11.4.06)
---------	--------------------	---	---	--------------	--	---

	Amines	Write equations and since	AS Chemistry	100 % Sheets	Chemistry Review	
	,	conditions for the	- 3.3.1.1 -		article: Two in one:	
		preparation of primary	Nomenclature.		the chemistry of	
		aliphatic amines from	- 3.3.1.2 – Reaction		shampoo and	
		both halogenoalkanes	mechanisms.		conditioner (Volume	
		and nitriles	- 3.3.3.1 – Nucleophilic		22, edition 3)	
		Write equations and give	substitution.			
		conditions for the				
		production of aromatic				
		amines and identify their				
		use in making dyes.				
		Place amines in order of				
		explain this order.				
		Identify the various				
		amines and quaternary				
16		ammonium salts formed				
sek		when ammonia and				
Ň		amines react with				
		halogenoalkanes				
		Give the mechanism for				
		reactions of ammonia				
		halogenoalkanes				
		Recognise the use of				
		guaternary ammonium				
		salts				
		Identify the products of				
		and write equations for				
		acylation reactions of				
		ammonia and amines				
		with acyl chlorides and				
		acid anhydrides				
		Outline the mechanism				
		for the acylation reactions				

	Polymers	Identify the repeating unit and linkages in polyesters and polyamides given the monomer(s)	AS Chemistry - 3.3.1.1 – Nomenclature. - 3.3.4.3 – Addition polymers.	100 % Sheets	RSC resource on nylon: http://www.rsc.org/le arn-	Exam Questions: • January 2012 Unit 4 Question 8b (QW12 4 08)
		Identify monomer(s) needed the make a condensation polymer given the repeating unit Know the repeating units			chemistry/resource/re s00000026/nylon The discovery of Nylon	• June 2011 Unit 4 Question 4a (QS11.4.04)
		in terylene, nylon 6,6 and Kevlar Know some uses of condensation polymers Explain the nature of the intermolecular forces			http://www.rsc.org/le arn- chemistry/resource/re s00000034/anecdotes -nylon	
Week 17		between molecules of condensation polymers. Explain why polyalkenes cannot be hydrolysed and so are non- biodegradable			Video on recycling plastics: <u>http://www.rsc.org/le</u> <u>arn-</u> <u>chemistry/resource/re</u> s00001347/recycling-	
		Explain why polyesters and polyamides can be hydrolysed and so are biodegradable Evaluate the advantages			plastics	
		and disadvantages of different methods of disposing of polymers.				

	Draw the structure of	AS Chemistry	100 % Sheets	Structure of amino	Exam Questions:
	given amino acids in acidic solution, alkaline solution and as zwitterions.	- 3.1.3.7 – Forces between molecules. - 3.3.1.1 – Nomenclature.		acids (rotatable) https://undergrad- ed.chemistry.ohio- state.edu/jmol-	 June 2013 Unit 4 Question 6 (QS13.4.06) January 2012 Unit
	Describe the primary, secondary and tertiary structure of proteins, including the importance of hydrogen bonds and s-s bonds Draw the structure of	A-level Chemistry - 3.3.9 – Carboxylic acids. - 3.3.11 – Amines.		viewer/# RSC resource on basic biochemistry http://www.rsc.org/E ducation/Teachers/Re sources/cfb/proteins. htm	 4 Question 7 (QS12.4.07) June 2011 Unit 4 Question 4c (QS11.4.04) January 2011 Unit 4 Question 4f (QW44.4.04)
	peptides formed from			AOA Riachamistry	(QVV11.4.04)
	Know that peptide link can be hydrolysed producing amino acids			Teachers' Notes (covers 3.3.13):	
Amino Acids, Proteins, DNA and Chromatography	Identify the amino acids given when a peptide is hydrolysed			k/resources/science/a s-and-a- level/chemistry-7404-	
	Know that amino acids can be separated and identified by thin-layer chromatography, including the use of r _f values.			7405/teach/teaching- notes	
	Describe the similarities and differences between thin-layer, column and gas chromatography Explain how chromatography works				
	Use retention times and r _f values to identify substances				
	Describe the use of mass spectroscopy to analyse				

	substances s gas chromat	eparated by ography		
Week 18				
Week 19			PAZ	

Amino Acids, Proteins, DNA and Chromatography	Required practical 12 Separation of species by thin-layer chromatography Explain that enzymes are proteins which act through a stereospecific active site that binds to a substrate Explain how drugs, which can be designed with the aid of computers, can act to inhibit enzymes by blocking active sites, but that the correct enantiomer is required. Identify the components of DNA Explain how the two DNA strands interact with hydrogen bonds between base pairs. Describe how DNA replicates in simple terms Explain how the anti- cancer drug cisplatin prevents DNA replication Explain why some drugs can have adverse effects and appreciate the balance between benefits and adverse effects of any drug.	AS Chemistry - 3.1.3.7 – Forces between molecules. - 3.3.1.1 – Nomenclature. A-level Chemistry - 3.3.9 – Carboxylic acids. - 3.3.11 – Amines.	100 % Sheets	AQA Chromatography Teachers' Notes: http://filestore.aqa.or g.uk/resources/chemi stry/AQA-7405-TN- CHROMATOGRAPHY.P DF RCS video on TLC http://www.rsc.org/le arn- chemistry/resource/re s00001074/thin-layer- chromatography Modern Chemical Techniques RSC resource: http://www.rsc.org/le arn- chemistry/resource/re s00001301/chromato graphy Simple animation showing the structure of DNA: http://www.youtube. com/watch?v=qy8dk5 iS1f0 Useful animations on biochemistry http://doctorprodigio us.wordpress.com/hd- animations/	Chemistry review article: Why is DNA helical? (Volume 1, edition 1) Chemistry Review articles: How pure is your aspirin? (Volume 6, edition 3) What is chromatography? (Volume 8, edition 2)
--	--	---	--------------	---	--

	Electrochemical Cells	Understand that there is a potential difference between two half cells (electrodes) that are joined Use cell notation to represent cells Understand that potentials are measured relative to the standard hydrogen	AS Chemistry - 3.1.7 – Oxidation, reduction and redox equations.	100 % Sheets	Chemistry Review articles: Understanding electrode potentials (Volume 12, edition 1) Electrode potentials (Volume 15, edition 3)	 Exam Questions: January 2013 Unit 5 Question 7 (QW13.5.07) January 2012 Unit 5 Question 4 (QW12.5.04)
Week 21		electrode Understand that the potential of an electrode is affected by conditions Know the standard conditions under which potentials are measured Know that electrode potential are listed in order in the electrochemical series Use the electrochemical series to predict the direction of simple redox reactions.				
Week 22	Electrochemical Cells	Required practical 8 Measuring the EMF of an electrochemical cell.	AS Chemistry - 3.1.7 – Oxidation, reduction and redox equations.	100 % Sheets		

	Electrochemical Cells	Calculate the EME and cell	AS Chemistry	100 % Sheets		Exam Questions:
	reaction for a commercial cell given the half- equations Explain how some cells can be recharged Explain how a hydrogen fuel cell works	 3.1.7 – Oxidation, reduction and redox equations. 			 June 2013 Unit 5 Question 5 (QS13.5.05) June 2012 Unit 5 Question 5 	
					(QS12.5.05)	
23		Evaluate the benefits and risks associated with using non-rechargeable, rechargeable and fuel cells.				
Week	Transition Metals	Write the electron structure of first row transition metals and their ions Describe what a transition metal is in terms of electron structure Describe the characteristic properties of transition metals Define the terms ligand, complex, co-ordinate bond and co-ordination number	AS Chemistry - 3.1.1 – Atomic structure (electron structure). - 3.1.7 – Oxidation, reduction and redox reactions (oxidation states, oxidation, reduction, redox equations).	100 % Sheets	<i>Chemistry Review</i> article: Vanadium (Volume 19, edition 4)	Exam Question: • January 2011 Unit 5 Question 4a and 4b (QW11.5.04)

Week 24	Transition Metals	Explain the difference between, and give examples of monodentate, bidentate and multidentate ligands Explain what happens in a ligand substitution (exchange) reaction and why there may be a change in co-ordination number Describe what haem is, how oxygen is carried in blood and why carbon monoxide is toxic Describe and explain the chelate effect in terms of enthalpy and entropy changes.	AS Chemistry - 3.1.1 – Atomic structure (electron structure). - 3.1.7 – Oxidation, reduction and redox reactions (oxidation states, oxidation, reduction, redox equations).	100 % Sheets	Molecule of month article on EDTA http://www.chm.bris. ac.uk/motm/edta/edt ah.htm - Practical Uses of EDTA RSC article on uses of EDTA http://www.rsc.org/c hemistryworld/podcas t/CIIEcompounds/tran scripts/EDTA.asp	
---------	-------------------	--	--	--------------	---	--

Week 25		Sketch examples of octahedral, tetrahedral, square planar and linear complexes Know how some complexes can show <i>cis-</i> <i>trans (e–z)</i> or optical isomerism Know the complexes in cisplatin and Tollen's reagent. Explain why transition metal complexes are coloured Describe factors that affect the colour of transition metal ions Describe how colorimetry can be used to find the concentration of coloured ions in solution.	 - 3.1.1 – Atomic structure (electron structure). - 3.1.7 – Oxidation, reduction and redox reactions (oxidation states, oxidation, reduction, redox equations). 		(including inorganic complexes) https://undergrad- ed.chemistry.ohio- state.edu/jmol- viewer/# Chemistry Review article: Colorimetry (Volume 12, edition 3) RSC booklet on colorimetry from Gifted & Talented Chemistry: http://www.rsc.org/le arn- chemistry/resource/re s0000847/spectrosc opy	 January 2011 Unit 5 Question 4a, 4b and 4c (QW11.5.04) June 2013 Unit 5 Question 6 (QS13.5.06) January 2012 Unit 5 Question 7a and 7b (QW12.5.07)
---------	--	---	---	--	---	---

	Transition Metals	Describe and explain what	AS Chemistry	100 % Sheets	Exa	am Questions:
	happens when vanadate(V) ions are reduced by zinc in acidic solution	- 3.1.1 – Atomic structure (electron structure). - 3.1.7 – Oxidation,		• Jı C (1	June 2006 Unit 5 Question 1 (QW06.5.01)	
Week 26		Understand how the redox potential of a transition metal ion is affected by changes in ph and ligand Describe and explain the use of $Ag(NH_3)_2^+$ in Tollen's reagent to distinguish between aldehydes and ketones Perform titrations and associated calculations for redox reactions of MnO_4^- with Fe ²⁺ and C ₂ O ₄ ²⁻ in acidic solution.	reduction and redox reactions (oxidation states, oxidation, reduction, redox equations).		• J. C (1	June 2005 Unit 5 Question 5 (QS05.5.05)

	Transition Metals	Describe what a heterogeneous catalyst is and the role of active sites	AS Chemistry - 3.1.1 – Atomic structure (electron	100 % Sheets	Chemistry Review article: Catalysts: getting chemistry	Exam Questions: • January 2013 Unit 5 Question 6
Week27		and the role of active sites and the support medium Explain, with the aid of equations, how v_2O_5 , acts as a catalyst in the contact process Describe the use of fe in the haber process Explain how heterogeneous catalysts can become poisoned Describe what a homogeneous catalyst is and how reactions proceed through an intermediate species Describe, with the aid of equations, how fe ²⁺ catalyses the reaction between i ⁻ and s ₂ O ₈ ²⁻ Describe, with the aid of equations, how mn ²⁺ catalyses the reaction between C ₂ O ₄ ²⁻ and MnO ₄ ⁻	structure (electron structure). - 3.1.7 – Oxidation, reduction and redox reactions (oxidation states, oxidation, reduction, redox equations).		getting chemistry going (Volume 20, edition 3) Chemistry Review article: Catalysts: heterogeneous catalysis (Volume 23, edition 1) Chemistry Review article: Catalysts: homogeneous catalysis (Volume 23, edition 3)	Question 6 (QW13.5.06) • January 2012 Unit 5 Question 6 (QW12.5.06)

	Ions in Aqueous Solutions	Understand that metal	AS Chemistry	100 % Sheets	AQA Reactions of	Exam Question:
Week 28	Ions in Aqueous Solutions	Understand that metal ions exist as metal-aqua ions in aqueous solution The hydrolysis of metal- aqua ions in aqueous solution giving acidic solutions Explain why $[m(h_20)_6]^{3+}$ ions are more acidic than $[m(h_20)_6]^{2+}$ ions Describe and explain reactions of $[m(h_20)_6]^{2+}$ (m = cu, fe) and $[m(h_20)_6]^{3+}$ $(m = al, fe)$ with the bases oh ⁻ , nh ₃ , co_3^{2-} Describe if and how metal hydroxides (cu(ii), fe(ii), al(iii), fe(iii)) react with h ⁺ and oh ⁻ , and so whether these metal hydroxides are basic or amphoteric. Required practical 11 Carry out simple test-tube	AS Chemistry - 3.1.7 – Oxidation, reduction and redox reactions (oxidation states, oxidation, reduction, redox equations). A-level Chemistry - 3.2.5 – Transition metals.	100 % Sheets	AQA Reactions of metal ions in aqueous solution resource: http://filestore.aqa.or g.uk/resources/chemi stry/AQA-7405- REACTIONS-OF- METAL-IONS.PDF	Exam Question: • January 2013 Unit 5 Question 8 (QW13.5.08)
		reactions to identify transition metal ions in aqueous solution.				
			1			1

	Period 3 and Their Oxides	describe and write	AS Chemistry	100 % Sheets	Youtube video on	Exam Questions
		equations for reactions of Na and Mg with water	- 3.1.3 – Bonding. - 3.2.1 – Periodicity.		Period 3 oxides: https://www.youtube.	 June 2013 Unit 5 Question 4a, 4b and
Week 29		Describe and write equations for reactions of Na, Mg, Al, Si, P and S with oxygen Describe and explain the trend in melting points of period 3 oxides Write equations for the reactions of period 3 oxides with water and describe the ph of the solutions formed Describe the structure and bonding of period 3 oxides, and link this to how they react with water.			<u>com/watch?v=D0pNA</u> <u>FiyE60</u> Youtube video of reaction of phosphorus with oxygen: <u>https://www.youtube.</u> <u>com/watch?v=U6 -</u> <u>EUcswSc&src_vid=mjk</u> <u>uSm_G7s&feature=iv</u> <u>&annotation_id=anno</u> <u>tation_323593</u>	4c (QS13.5.04) • January 2013 Unit 5 Question 4a, 4b, 4c and 4d (QW13.5.04) • January 2012 Unit 5 Question 3 (QW12.5.03)
Week 30	NMR	Understand the use of TMS and the δ scale for chemical shift Understand the use of deuterated solvents or CCl ₄ Use the n+1 rule to deduce spin-spin splitting patterns of adjacent, non-equivalent protons in aliphatic compounds	AS Chemistry - 3.3.1.1 – Nomenclature. - 3.3.6 – Organic analysis.	100 % Sheets	RSC Spectral School: http://www.rsc.org/le arn- chemistry/collections/ spectroscopy?uol_r=3 aeObe55 RSC Spectroscopy resource: http://www.rsc.org/le arn- chemistry/resource/re s0000847/spectrosc opy	

Week 31	NMR	Deduce the structure of compounds using ¹ H NMR to deduce structures including the number, position, relative intensity and splitting of signals Deduce the structure of compounds using ¹³ C NMR to deduce structures including the number and position of signals.	AS Chemistry - 3.3.1.1 – Nomenclature. - 3.3.6 – Organic analysis.	100 % Sheets	Database of spectra for organic compounds <u>http://sdbs.db.aist.go.</u> jp/sdbs/cgi- bin/cre_index.cgi	Exam Questions: • June 2013 Unit 4 Question 7 (QS13.4.07) • January 2013 Unit 4 Question 5 (QS13.4.05) • June 2012 Unit 4 Question 8 (QS12.4.08)
Week 32	Organic Synthesis	Devise synthetic routes, with up to four steps, to make specific organic compounds using the reactions in the specification Explain why processes are designed to avoid solvents, non-hazardous starting materials and have steps with high atom economy.	AS Chemistry - All organic chemistry topics.	100 % Sheets	RSC synthesis resource http://www.rsc.org/le arn- chemistry/resource/re s00000003/synthesis- explorer Chemistry review articles: New tricks for stacking bricks: modern approaches to organic synthesis (Volume 12, edition 3) Salbutamol: saving your breath (Volume 18, edition 4)	

Week 33	Review and exam prep
Week 34	EXAM – Paper 1
Week 35	EXAM – Paper 2
Week 36	EXAM – Paper 3