The Holy Family a voluntary academy ### YEAR 11 Trial Examination Summer Term 2024 | Student Name | | |------------------|--| | Candidate Number | | | Subject Teacher | | | Form | | **Subject: Combined Science** Level: Foundation **Title of Paper: Combined Science Foundation** **Duration of Paper: 55 minutes** Head of Subject/Lead: J Brewer Head of Faculty: J Brewer ### **Biology Questions** 1 Figure 4 shows a diagram of the human blood system. Figure 4 (a) (i) Name blood vessel X. (1) (ii) Which row of the table shows the width of the wall and blood pressure in blood vessel X? (1) | to the | width of wall | blood pressure | |--------|---------------|----------------| | Α | thick | high | | В | thick | low | | C | thin | high | | D | thin | low | (b) Figure 5 shows the pressure of blood flowing through the arteries, capillaries and veins of a person. Figure 5 Calculate the difference in blood pressure from the maximum in the arteries to the minimum in the veins. kPa (2) (c) Figure 6 shows a diagram of a vein with blood cells. Figure 6 (i) Identify structure Q. (1 (ii) State the function of structure Q. (1) (d) Describe how the heart causes blood to move to the lungs. 131 (Total for Question 2 = 9 marks) | • | Res | pira | ition | occurs in cells. | | |--------------|------------|------------|--|---|---| | | (a) | Wh | y do | cells respire? | (1) | | | | | A | to produce nitrogen | 14.20 | | | | | В | to release oxygen | | | | | | C | to produce glucose | | | | | | D | to release energy | | | | (b) | An a | athle | ete runs every day as part of their training. | | | | | (i) | Expl | ain why the breathing rate of the athlete increases when running. | | | | | | | | (2) | | | m | | | | | | ********** | | | | | | | ********** | 4100011111 | ******** | Ö::::::::::::::::::::::::::::::::::::: | | | | | ********** | ******** | 0410041214 | | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | 10011001 | | | | | | | | (| | | en the athlete is running, their muscle cells use both aerobic respiration anaerobic respiration. | | | | | 9 | State | e two differences between aerobic respiration and anaerobic respiration. | (2) | | 1 | | | | | ,, — k | | | | | | | ************************************** | | | | | | | | | 2 | | | | | | | 2 | | | | | *************************************** | | III marining | ********* | ********** | | | *************************************** | | | | | 2,011 | (c) Bromothymol blue (BTB) solution is an indicator of pH. Figure 10 shows the colour of BTB at different pH levels. | рН | 4 | 5 | 6 | 7 (neutral) | 8 | |--------|--------|---------------|-------------|-------------|------| | colour | yellow | yellowy green | light green | green | blue | Figure 10 When air is passed through green BTB, for one minute, the solution stays green. When a person breathes out through a straw into BTB for one minute the solution turns yellow. | (i) Explain why the air breathed out turns the BTB solution yellow. | | |---|--| | | | | | | | | | | · | | ## **Chemistry Questions** **3** (a) Figure 5 shows one molecule of a compound obtained from crude oil. Figure 5 (i) Give the names of the **two** elements in this molecule. (2) (ii) What is the molecule in Figure 5? ☐ **A** an oxide - ☐ **B** a chain molecule - ☐ **C** a fullerene - ☐ **D** a ring molecule - (iii) What is the relative formula mass of the compound in Figure 5? (relative atomic masses: H = 1.0, C = 12) - □ **A** 13 - □ **B** 42 - □ C 44 - □ **D** 96 | use | |---| | | | fuel for aircraft | | • fuel for ships | | fuel for cars | | making plastic | | extracting iron | | making road surfaces | | s are dissolved in separate test tubes
be. | | uld observe in each test tube. | | | | | | | | | A scientist produced the information in Figure 6 about the Earth's atmosphere and the Earth's average surface temperature. | Earth's atmosphere 3 bi | llion years ago | Earth's atmosphere today | | | |---|-----------------|--|-------|--| | gas | % | gas | % | | | carbon dioxide | 95 | nitrogen | 78.00 | | | water vapour | 4 | oxygen | 21.00 | | | all other gases | 1 | carbon dioxide | | | | | | all other gases including water vapour | 0.96 | | | average surface temperature 3 billion years ago | | average surface temperature today | | | | above 400°C | | 20°C | | | Figure 6 (a) Complete the bar chart showing the composition of the Earth's atmosphere 3 billion years ago by adding a bar to show the percentage of carbon dioxide. | | | has decreased | has increased | has stayed the same | | |----------|---------------------------------------|--|---|--|--| | | Over | the past 3 billion y | ears the average surface t | emperature of the Earth | | | (ii) | | Earth's atmosphere
er vapour than toda | 3 billion years ago contain
y's atmosphere. | ned much more | | | | Expla | ain what happened | to the water vapour. | | (2) | | ******* | | | | | | | 533,2500 | | | на под | | 011X41 353231XXIIX | | | | | | | 9170011 E111 E10111 | | .,, | | | | | C-41101111111111111111111111111111111111 | | | | | rease in percentage of ca
e growth of primitive plan | rbon dioxide was partly due
ts. | 6.250111-10-11-11-11 | | to | this ga
Carb | as being used in the | | ts. | | | to | Carbo
Prod
Give | as being used in the
on dioxide was used
uced oxygen.
the name of the pro | e growth of primitive plan | ts.
ve plants and | | | to | Carbo
Prod
Give | as being used in the
on dioxide was use
uced oxygen. | e growth of primitive plan | ts.
ve plants and | (1) | | to (i) | Carbo
prod
Give
prod | as being used in the
on dioxide was used
uced oxygen.
The name of the pro
uces oxygen. | e growth of primitive plan | ts.
ve plants and
in carbon dioxide and | (1) | | to (ii) | Carbo
prod
Give
prod | as being used in the on dioxide was used uced oxygen. The name of the pro uces oxygen. h of the following t | e growth of primitive pland in the growth of primitive pland ocess in plants that takes | ts. ve plants and in carbon dioxide and as is oxygen? | (1) | | (ii) | Carbo
prod
Give
prod
Whic | on dioxide was used in the uced oxygen. The name of the prouces oxygen. The of the following the prouces oxygen. | e growth of primitive pland in the growth of primitive pland occess in plants that takes ests would show that a ga | rts. ve plants and in carbon dioxide and as is oxygen? rns with a pop | (1) | | (ii) | Carbo prod Give prod Whic | as being used in the on dioxide was used uced oxygen. The name of the prouces oxygen. The name of the prouces oxygen. The put a lighted splan but a glowing splan but a glowing splan. | e growth of primitive pland in the growth of primitive pland occess in plants that takes ests would show that a gallint into the gas and it but | rts. Ve plants and In carbon dioxide and as is oxygen? This with a pop lights | (1) | - (d) Many people are concerned by the increasing amount of carbon dioxide in the atmosphere. - (i) The amount of carbon dioxide in the atmosphere is measured in parts per million (ppm). Figure 7 shows the amount of carbon dioxide in the atmosphere in June 2001 and in June 2021. | | amount of carbon dioxide in ppm | |-----------|---------------------------------| | June 2001 | 371.17 | | June 2021 | 416.56 | ### Figure 7 Calculate the increase in the amount of carbon dioxide, in ppm, from June 2001 to June 2021. Give your answer to the nearest whole number. increase in amount of carbon dioxide = _____ppm (ii) State **one** possible effect that could be caused by the increasing amount of carbon dioxide in the atmosphere. (1) (Total for Question 3 = 9 marks) ### **Physics Questions** Figure 4 One of the forces acting to stretch the spring is shown in Figure 4. Complete Figure 4 by adding an arrow to show the other force acting to stretch the spring. (2) - (b) A weight of 4.0 N is used to extend a spring. The extension of the spring is 0.06 m. - (i) Calculate the spring constant, k, of the spring. Use an equation selected from the list of equations given at the end of the question paper. (3) spring constant = _____N/m | (c) Another spring has a spring constant of 250 N/m. Calculate the work done in stretching the spring by 0.30 m. | (2) | |---|----------| | (c) Another spring has a spring constant of 250 N/m. | | | | | | | | | Calculate the work done in stretching the spring by 0.30 m. | | | | | | State the unit. | | | Use the equation | | | $E = \frac{1}{2} \times k \times x^2$ | | | | (3) | work done in stretching the spring = unit | | | (Total for Question 3 = 10 |) marks) | | 6 | (a) | Whi | ch d | of these means changing state from solid directly to gas? | (1) | |---|-----|-------|-------|---|-----| | | | | A | condensing | | | | | | В | freezing | | | | | | C | melting | | | | | | D | sublimating | | | | (b) | An c | bje | ct has a mass of $7.22 \times 10^{-2}\text{kg}$ and a volume of $2.69 \times 10^{-5}\text{m}^3$. | | | | | Calc | ulat | e the density, $ ho$, of the object. | | | | | Use a | an e | quation selected from the list of equations given at the end of the paper. | | | | | | | | (3) | | | | State | e the | e unit. | (2) | density = unit | | | | (c) | Alum | niniu | ım has a melting point of 660°C. | | | | | The a | absc | olute zero of temperature is −273 °C. | | | | | (i) C | alcu | late the melting point of aluminium in kelvin. | | | | | | | | (1) | melting point of aluminium = | K | | | | | | | | | (ii) Describe the motion of particles in liquid aluminium (above 660 °C). | | |---|-------| | | (2) | | | ····· | | | | | | | *(d) A student needs to determine the specific heat capacity of water Figure 12 shows some of the equipment the student uses. Figure 12 Describe the method the student should use to determine the specific heat capacity of water. Your description should include, with reasons, - any other equipment needed - · the measurements needed. You may draw a diagram if it helps your answer. THIS AREA | | TOTAL FOR PAPER = 60 MARKS | | | |---|-----------------------------------|--|--| | | (Total for Question 6 = 13 marks) | 0 | # The periodic table of the elements | 0 4 He | 20
Ne
neon
10 | 40
Ar
argon
18 | 84
Kr
krypton
36 | 131
Xe
xenon
54 | [222]
Rn
radon
86 | |---------------|---|--------------------------------|------------------------------------|-------------------------------------|---------------------------------------| | _ | 100 months | 35.5
C
chlorine
17 | 80
Br
brownine
35 | 127
 | [210] At asiatine 85 | | ω | 16
0
0
8 | 32
S
suffur
16 | 79
Se
selenium
34 | 128
Te
tellurium
52 | [209] Po polonium 84 | | 5 | 14
N
ntrogen
7 | 31
Phosphorus | 75
As
arsenic
33 | 122
Sb
antimony
51 | 209
Bi
bismuth
83 | | 4 | 12
Carbon
6 | 28
Silicon
14 | 73
Ge
germanlum
32 | 119
Sn
fin
50 | 207 Pb lead 82 | | ю | 11
Boron
5 | 27
AI
aluminium
13 | 70
Ga
gallium
31 | 115
Indium
49 | 204
TI
thallium
81 | | , | | | 65
Zn
znc
30 | 112
Cd
cadmium
48 | 201
Hg
mercury
80 | | | | | 63.5
Cu
copper
29 | 108
Ag
silver
47 | 197
Au
gold
79 | | | | | 59
Ni
nickel
28 | 106
Pd
palladium
46 | 195
Pt
platinum
78 | | | 59
Co
cobalt
27 | 103
Rh
rhodium
45 | 192
 | | | | T
iydrogen | 56
Fe | Ru
ruthenium
44 | 190
Os
osmium
76 | | | | | 55
Mn
manganese
25 | [98] Tc technetium 43 | 186
Re
rhenum
75 | | | | Key | relative atomic mass
atomic symbol
name
atomic (proton) number | | 52
Cr | 96
Mo
molybdenum
42 | 184
W
tungsten
74 | | | | | 51
V
vanadium
23 | 93
Nb
nlobium
41 | 181
Ta
tantalum
73 | | | relativ
atomic | | 48
Ti
tlianum
22 | 91
Zr
zirconium
40 | 178
Hf
hafnum
72 | | | | 11 | 45
Sc
scandium
21 | 89
Y 39 | 139
La*
Isothernum
57 | | 5 | 9
Be
beryllum
4 | 24
Mg
magneslum
12 | 40
Ca
calcium
20 | 88
Sr
stranlium
38 | 137
Ba
barium
56 | | - | 7
Li
Ilthium
3 | 23
Na
sadium
11 | 39 K polassium 19 | 85
Rb
rubidium
37 | 133
Cs
caesium
55 | | | | | | | | * The elements with atomic numbers from 58 to 71 are omitted from this part of the periodic table. The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number. if you're taking GCSE (9-1) Combined Science or GCSE (9-1) Physics, you will need these equations: HT = higher tier | acceleration = change in velocity ÷ time taken | $\frac{d}{d} = \frac{(v - u)}{t}$ | |--|---| | force = mass x acceleration | $F = m \times a$ | | weight = mass × gravitational field strength | $W = m \times g$ | | momentum = mass × velocity | A×W=d | | change in gravitational potential energy $=$ mass \times gravitational field strength \times change in vertical height | $\Delta GPE = m \times g \times \Delta h$ | | kinetic energy = 1/2 × mass × (speed)² | $KE = \frac{1}{2} \times m \times v^2$ | | $efficiency = \frac{(useful energy transferred by the device)}{(total energy supplied to the device)}$ | | | wave speed = frequency × wavelength | $v = f \times \lambda$ | | wave speed = distance + time | × La | | work done = force \times distance moved in the direction of the force | $E = F \times d$ | | power = work done + time taken | P = E | | energy transferred = charge moved \times potential difference | $E = Q \times V$ | | charge = current × time | Q=/×t | | potential difference = current \times resistance | V=/×R | | power = energy transferred + time taken | Д
Ш
1 фт | | electrical power $=$ current $ imes$ potential difference | $P = l \times V$ | | electrical power = $\{current\}^2 \times resistance\}$ | $P = I^2 \times R$ | | density = mass + volume | w= d | $\vec{V} - \vec{U} = 2 \times \sigma \times x$ F = (mv - mu) $\Delta Q = m \times c \times \Delta \theta$ $V_{\rho} \times I_{\rho} = V_{s} \times I_{s}$ $\mathcal{E} = \frac{1}{2} \times k \times x^2$ $E = I \times V \times t$ $F = B \times I \times I$ J×m=0 $F = k \times x$ force on a conductor at right angles to a magnetic field carrying a current = magnetic flux density × current × length For transformers with 100% efficiency, potential difference across primary coil × current in primary coil = potential difference across secondary coil × current in secondary coil $(\text{final velocity})^2 - (\text{initial velocity})^2 = 2 \times \text{acceleration} \times \text{distance}$ thermal energy for a change of state = $mass \times specific$ latent change in thermal energy = mass \times specific heat capacity \times change in temperature energy transferred = current \times potential difference \times time energy transferred in stretching $\approx 0.5 \times \text{spring constant} \times$ force exerted on a spring = spring constant × extension force = change in momentum + time (extension) 보 부 if you're taking GCSE (9-1) Physics, you also need these extra equations: | | $P = \frac{F}{A}$ | N = N | $P_1 \times V_1 = P_2 \times V_2$ | $P = h \times p \times g$ | |--|--|---|---|--| | mal to the direction | of surface | number of turns in primary coil number of turns in secondary coil | of fixed mass at constant | right of column × density of | | moment of a force = force \times distance normal to the direction of the force | pressure = force normal to surface ÷ area of surface | potential difference across primary coil number of turns in primary coil potential difference across secondary coil number of turns in secondary coil | to calculate pressure or volume for gases of fixed mass at constant temperature | pressure due to a column of liquid = height of column \times density of liquid \times gravitational field strength | | | | Ħ | | 높 | **END OF EQUATION LIST** W81165A ı 46 W81165A